56 Commits

Author SHA1 Message Date
2c1899f3b5 added proper exponential drive 2025-02-26 17:03:06 +00:00
f3b17422e1 added proper exponential drive 2025-02-26 16:59:26 +00:00
d2076e7afb Changes from 2/25 build session 2025-02-25 18:59:42 -05:00
3cf33a049e keeps algae pulled when idle at setpoint 2025-02-25 14:57:28 -05:00
52e92574c4 automatic reef alignment controls 2025-02-25 03:12:59 -05:00
2990b917e7 auto align setpoints 2025-02-24 12:02:45 -05:00
d934cdf35b processor placement, advantagekit, and chirp 2025-02-24 07:50:18 -05:00
4d260809d8 pathplanner directions wrong 2025-02-22 19:28:38 -05:00
eb00b1146e working on pathplanner 2025-02-22 18:37:50 -05:00
87e7eb4974 elevator pid work, but crash 2025-02-22 13:22:00 -05:00
44a036f420 testing elevator 2025-02-22 10:15:10 -05:00
a145c290fd pid gain scheduling 2025-02-22 02:48:58 -05:00
3dafb3c269 merge with vision stuff 2025-02-21 18:08:47 -05:00
1c64d7344b vision stuff 2025-02-21 04:22:22 -05:00
f57cf77200 elevator and manipulator work invidiually, not together 2025-02-20 18:57:39 -05:00
c48a53a0a5 stuff works more tuning 2025-02-20 17:40:16 -05:00
858c897aad added a few things to the shuffle board 2025-02-19 22:22:47 +00:00
1819f59657 added a reset 2025-02-19 18:28:17 +00:00
98ae2a4d94 Changed elevator and manip pivot to regular pid controllers 2025-02-19 18:23:41 +00:00
0522f7c579 testing from 2/18 2025-02-18 19:01:11 -05:00
f6aeec7c7e Corrected the elevator velocity converstion factor and added the controller reset in the right place 2025-02-18 18:33:10 +00:00
42d15ab101 More work tuning the elevator 2025-02-17 18:58:43 -05:00
aa6a0366e6 feeding vision into pose estimation 2025-02-17 03:20:28 -05:00
2e9f294cdb Prep for 2/17 meeting. Finished removing TrashMotion. 2025-02-17 05:11:38 +00:00
9fc597bd30 Many attempt at tuning Elevator values at 2/15 build session 2025-02-15 18:20:59 -05:00
5a53c5fe07 Merge branch 'main' of https://git.coldlightalchemist.com/Team_2648/2025_Robot_Code 2025-02-15 12:47:07 -05:00
ddcf64159f Robot PID testing 2025-02-15 12:46:23 -05:00
9497e216d7 beginning auto paths 2025-02-15 03:11:11 -05:00
9cc9b993eb global pose vision transformations 2025-02-15 02:48:28 -05:00
38dad2861d global apriltag coordinates 2025-02-15 01:48:58 -05:00
2275248f70 Random changes to try to make the robot work 2025-02-14 17:04:01 -05:00
187e7385c8 testing stuff day one 2025-02-11 19:10:01 -05:00
f0b7955faa working on dt offsets 2025-02-11 16:44:51 -05:00
aff9a4f2cb safe travels command and constants 2025-02-11 14:27:29 -05:00
619b3f4b7f manipulator pivot on controller pid 2025-02-11 09:15:19 -05:00
ed1ffe7044 manipulator and elevator constants 2025-02-11 00:55:28 -05:00
96ad0ba088 work on elevator manual, vision, and manipulator 2025-02-10 22:06:12 -05:00
56980d3772 removed velocity controllers on position mechanisms and added controller PID for elevator 2025-02-08 03:27:59 -05:00
6fa4377e52 removed algae beam break 2025-01-30 12:54:43 -05:00
89c1914d11 drivetrain odometry -> pose estimator 2025-01-30 04:14:57 -05:00
3af046f058 changing a bunch of constants and fixing stuff 2025-01-30 03:49:33 -05:00
34a547026d added vision class 2025-01-30 01:59:08 -05:00
0e91643b57 Merge branch 'kraken_swerve'
release the kraken
2025-01-27 21:38:03 -05:00
5fa4738b36 Added a few shuffle board things 2025-01-27 14:18:28 +00:00
ff3ecf6d1d Didnt commit everything for some reason 2025-01-26 19:31:38 +00:00
cef200a864 Renamed things for consistency, added a few methods 2025-01-26 19:28:49 +00:00
dff4d0e04f added spark configs to all subsystems, fixed a few formatting inconsistencies, added a TODO 2025-01-21 04:18:36 +00:00
9ab7ffad84 1,000 comments, reworked the climber pivot, removed indexer, added clamps on goToSetpoint methods 2025-01-21 03:56:00 +00:00
a96d96fecb Merge branch 'main' into kraken_swerve 2025-01-20 20:12:40 -05:00
edb95da65c Merge branch 'main' of https://git.coldlightalchemist.com/Team_2648/2025_Robot_Code 2025-01-20 20:02:53 -05:00
b90056f9ce Adding basic PathPlanner setup 2025-01-20 20:02:51 -05:00
ce7246114f Added lots of comments, also added a few simple methods as backup 2025-01-21 00:58:38 +00:00
198d105741 Adding AHRS from Studica to the drivetrain so the NavX is assumed to be used, also cleaned up some unused imports 2025-01-20 19:33:33 -05:00
8cbd9bb095 Kraken swerve based on Tyler's original work 2025-01-18 16:04:54 -05:00
4d9aa82520 Adding ArmSysID and some more configuration stuff 2025-01-18 15:00:53 -05:00
c1dddcace5 Resolving some issues related to the use of the CANcoder, and added some missing constants and instantiations for PIDControllers related to the Arm 2025-01-18 12:57:02 -05:00
49 changed files with 2537 additions and 505 deletions

View File

@@ -0,0 +1,6 @@
{
"download": {
"localDir": "C:\\Users\\infin\\Downloads",
"serverTeam": "2648"
}
}

View File

@@ -0,0 +1,13 @@
{
"NetworkTables Settings": {
"mode": "Client (NT4)"
},
"transitory": {
"Shuffleboard": {
"Sensors Tab": {
"open": true
},
"open": true
}
}
}

1
.SysId/sysid.json Normal file
View File

@@ -0,0 +1 @@
{}

View File

@@ -10,6 +10,11 @@ java {
def ROBOT_MAIN_CLASS = "frc.robot.Main"
task(replayWatch, type: JavaExec) {
mainClass = "org.littletonrobotics.junction.ReplayWatch"
classpath = sourceSets.main.runtimeClasspath
}
// Define my targets (RoboRIO) and artifacts (deployable files)
// This is added by GradleRIO's backing project DeployUtils.
deploy {
@@ -72,6 +77,9 @@ dependencies {
testImplementation 'org.junit.jupiter:junit-jupiter:5.10.1'
testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
def akitJson = new groovy.json.JsonSlurper().parseText(new File(projectDir.getAbsolutePath() + "/vendordeps/AdvantageKit.json").text)
annotationProcessor "org.littletonrobotics.akit:akit-autolog:$akitJson.version"
}
test {

Binary file not shown.

View File

@@ -0,0 +1,31 @@
{
"version": "2025.0",
"command": {
"type": "sequential",
"data": {
"commands": [
{
"type": "path",
"data": {
"pathName": "Start to H"
}
},
{
"type": "named",
"data": {
"name": "Shoot Coral L4"
}
},
{
"type": "path",
"data": {
"pathName": "H Backup"
}
}
]
}
},
"resetOdom": true,
"folder": null,
"choreoAuto": false
}

View File

@@ -0,0 +1,25 @@
{
"version": "2025.0",
"command": {
"type": "sequential",
"data": {
"commands": [
{
"type": "path",
"data": {
"pathName": "Start to 30 Right"
}
},
{
"type": "named",
"data": {
"name": "Shoot Coral L4"
}
}
]
}
},
"resetOdom": true,
"folder": null,
"choreoAuto": false
}

View File

@@ -0,0 +1,49 @@
{
"version": "2025.0",
"command": {
"type": "sequential",
"data": {
"commands": [
{
"type": "path",
"data": {
"pathName": "Start to 30 Right"
}
},
{
"type": "named",
"data": {
"name": "Shoot Coral L4"
}
},
{
"type": "path",
"data": {
"pathName": "30 Right to HP"
}
},
{
"type": "named",
"data": {
"name": "Collect Coral"
}
},
{
"type": "path",
"data": {
"pathName": "HP to 330 Left"
}
},
{
"type": "named",
"data": {
"name": "Shoot Coral L4"
}
}
]
}
},
"resetOdom": true,
"folder": null,
"choreoAuto": false
}

View File

@@ -0,0 +1,19 @@
{
"version": "2025.0",
"command": {
"type": "sequential",
"data": {
"commands": [
{
"type": "path",
"data": {
"pathName": "fein"
}
}
]
}
},
"resetOdom": true,
"folder": null,
"choreoAuto": false
}

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,54 @@
{
"version": "2025.0",
"waypoints": [
{
"anchor": {
"x": 5.289041095890411,
"y": 2.9732020547945206
},
"prevControl": null,
"nextControl": {
"x": 5.950171232876712,
"y": 1.6208904109589037
},
"isLocked": false,
"linkedName": null
},
{
"anchor": {
"x": 1.4424657534246574,
"y": 0.7944777397260271
},
"prevControl": {
"x": 2.389083904109589,
"y": 2.5374571917808213
},
"nextControl": null,
"isLocked": false,
"linkedName": null
}
],
"rotationTargets": [],
"constraintZones": [],
"pointTowardsZones": [],
"eventMarkers": [],
"globalConstraints": {
"maxVelocity": 4.0,
"maxAcceleration": 1.0,
"maxAngularVelocity": 540.0,
"maxAngularAcceleration": 400.0,
"nominalVoltage": 12.0,
"unlimited": false
},
"goalEndState": {
"velocity": 0,
"rotation": 54.162347045721745
},
"reversed": false,
"folder": null,
"idealStartingState": {
"velocity": 0,
"rotation": 120.96375653207336
},
"useDefaultConstraints": true
}

View File

@@ -0,0 +1,61 @@
{
"version": "2025.0",
"waypoints": [
{
"anchor": {
"x": 4.988527397260274,
"y": 5.257106164383561
},
"prevControl": null,
"nextControl": {
"x": 5.649657534252619,
"y": 6.474186643842743
},
"isLocked": false,
"linkedName": null
},
{
"anchor": {
"x": 1.3072345890410957,
"y": 7.135316780821918
},
"prevControl": {
"x": 2.1636986301369863,
"y": 6.188698630136986
},
"nextControl": null,
"isLocked": false,
"linkedName": "HP Left Position"
}
],
"rotationTargets": [],
"constraintZones": [],
"pointTowardsZones": [],
"eventMarkers": [
{
"name": "HP Pickup",
"waypointRelativePos": 0.20476190476190542,
"endWaypointRelativePos": null,
"command": null
}
],
"globalConstraints": {
"maxVelocity": 4.0,
"maxAcceleration": 1.0,
"maxAngularVelocity": 540.0,
"maxAngularAcceleration": 400.0,
"nominalVoltage": 12.0,
"unlimited": false
},
"goalEndState": {
"velocity": 0,
"rotation": -53.97262661489646
},
"reversed": false,
"folder": null,
"idealStartingState": {
"velocity": 0,
"rotation": -120.06858282186238
},
"useDefaultConstraints": true
}

View File

@@ -0,0 +1,66 @@
{
"version": "2025.0",
"waypoints": [
{
"anchor": {
"x": 3.6061643835666786,
"y": 5.031720890416444
},
"prevControl": null,
"nextControl": {
"x": 3.065239726031196,
"y": 5.647773972598556
},
"isLocked": false,
"linkedName": null
},
{
"anchor": {
"x": 1.2510679859194649,
"y": 7.0812357195448
},
"prevControl": {
"x": 1.6678510274010594,
"y": 6.6394691780780075
},
"nextControl": null,
"isLocked": false,
"linkedName": null
}
],
"rotationTargets": [
{
"waypointRelativePos": 0.498997995991984,
"rotationDegrees": -52.46519085612145
}
],
"constraintZones": [],
"pointTowardsZones": [],
"eventMarkers": [
{
"name": "HP Pickup",
"waypointRelativePos": 0.16666666666666663,
"endWaypointRelativePos": null,
"command": null
}
],
"globalConstraints": {
"maxVelocity": 4.0,
"maxAcceleration": 1.0,
"maxAngularVelocity": 540.0,
"maxAngularAcceleration": 400.0,
"nominalVoltage": 12.0,
"unlimited": false
},
"goalEndState": {
"velocity": 0,
"rotation": -53.98486432191523
},
"reversed": false,
"folder": null,
"idealStartingState": {
"velocity": 0,
"rotation": -59.99999999999999
},
"useDefaultConstraints": true
}

View File

@@ -0,0 +1,54 @@
{
"version": "2025.0",
"waypoints": [
{
"anchor": {
"x": 5.7,
"y": 4.3
},
"prevControl": null,
"nextControl": {
"x": 6.053790983606557,
"y": 4.312704918032787
},
"isLocked": false,
"linkedName": "H"
},
{
"anchor": {
"x": 6.389446721311475,
"y": 4.3
},
"prevControl": {
"x": 6.1394487099079695,
"y": 4.300997143065429
},
"nextControl": null,
"isLocked": false,
"linkedName": null
}
],
"rotationTargets": [],
"constraintZones": [],
"pointTowardsZones": [],
"eventMarkers": [],
"globalConstraints": {
"maxVelocity": 4.0,
"maxAcceleration": 1.0,
"maxAngularVelocity": 540.0,
"maxAngularAcceleration": 400.0,
"nominalVoltage": 12.0,
"unlimited": false
},
"goalEndState": {
"velocity": 0,
"rotation": 180.0
},
"reversed": false,
"folder": null,
"idealStartingState": {
"velocity": 0,
"rotation": 180.0
},
"useDefaultConstraints": true
}

View File

@@ -0,0 +1,61 @@
{
"version": "2025.0",
"waypoints": [
{
"anchor": {
"x": 1.3072345890410957,
"y": 7.135316780821918
},
"prevControl": null,
"nextControl": {
"x": 2.5994434931506847,
"y": 6.909931506849315
},
"isLocked": false,
"linkedName": "HP Left Position"
},
{
"anchor": {
"x": 3.973766447368421,
"y": 5.246957236842105
},
"prevControl": {
"x": 3.6582270638067773,
"y": 5.772856209444845
},
"nextControl": null,
"isLocked": false,
"linkedName": null
}
],
"rotationTargets": [],
"constraintZones": [],
"pointTowardsZones": [],
"eventMarkers": [
{
"name": "Lift L4",
"waypointRelativePos": 0.5,
"endWaypointRelativePos": null,
"command": null
}
],
"globalConstraints": {
"maxVelocity": 4.0,
"maxAcceleration": 1.0,
"maxAngularVelocity": 540.0,
"maxAngularAcceleration": 400.0,
"nominalVoltage": 12.0,
"unlimited": false
},
"goalEndState": {
"velocity": 0,
"rotation": -59.69923999693802
},
"reversed": false,
"folder": null,
"idealStartingState": {
"velocity": 0,
"rotation": -53.97262661489646
},
"useDefaultConstraints": true
}

View File

@@ -0,0 +1,65 @@
{
"version": "2025.0",
"waypoints": [
{
"anchor": {
"x": 2.0,
"y": 7.0
},
"prevControl": null,
"nextControl": {
"x": 3.0,
"y": 7.0
},
"isLocked": false,
"linkedName": null
},
{
"anchor": {
"x": 12.272,
"y": 2.975
},
"prevControl": {
"x": 10.940715672291898,
"y": 2.975
},
"nextControl": null,
"isLocked": false,
"linkedName": null
}
],
"rotationTargets": [],
"constraintZones": [],
"pointTowardsZones": [
{
"fieldPosition": {
"x": 0.4,
"y": 5.5
},
"rotationOffset": 0.0,
"minWaypointRelativePos": 0.15,
"maxWaypointRelativePos": 0.4,
"name": "Point Towards Zone"
}
],
"eventMarkers": [],
"globalConstraints": {
"maxVelocity": 4.0,
"maxAcceleration": 1.0,
"maxAngularVelocity": 540.0,
"maxAngularAcceleration": 400.0,
"nominalVoltage": 12.0,
"unlimited": false
},
"goalEndState": {
"velocity": 0,
"rotation": 59.99999999999999
},
"reversed": false,
"folder": null,
"idealStartingState": {
"velocity": 0,
"rotation": 0.0
},
"useDefaultConstraints": true
}

View File

@@ -0,0 +1,61 @@
{
"version": "2025.0",
"waypoints": [
{
"anchor": {
"x": 7.602996575342465,
"y": 2.0115582191780823
},
"prevControl": null,
"nextControl": {
"x": 6.491095890410959,
"y": 1.9965325342465756
},
"isLocked": false,
"linkedName": null
},
{
"anchor": {
"x": 5.289041095890411,
"y": 2.9882277397260277
},
"prevControl": {
"x": 6.130479452054795,
"y": 2.11673801369863
},
"nextControl": null,
"isLocked": false,
"linkedName": null
}
],
"rotationTargets": [],
"constraintZones": [],
"pointTowardsZones": [],
"eventMarkers": [
{
"name": "Lift L4",
"waypointRelativePos": 0.7142857142857124,
"endWaypointRelativePos": null,
"command": null
}
],
"globalConstraints": {
"maxVelocity": 4.0,
"maxAcceleration": 1.0,
"maxAngularVelocity": 540.0,
"maxAngularAcceleration": 400.0,
"nominalVoltage": 12.0,
"unlimited": false
},
"goalEndState": {
"velocity": 0,
"rotation": 120.25643716352937
},
"reversed": false,
"folder": null,
"idealStartingState": {
"velocity": 0,
"rotation": 90.0
},
"useDefaultConstraints": true
}

View File

@@ -0,0 +1,61 @@
{
"version": "2025.0",
"waypoints": [
{
"anchor": {
"x": 7.587970890410959,
"y": 6.143621575342466
},
"prevControl": null,
"nextControl": {
"x": 6.385916095890411,
"y": 6.158647260273973
},
"isLocked": false,
"linkedName": null
},
{
"anchor": {
"x": 4.988527397260274,
"y": 5.227054794520548
},
"prevControl": {
"x": 5.574529109589041,
"y": 6.098544520547945
},
"nextControl": null,
"isLocked": false,
"linkedName": null
}
],
"rotationTargets": [],
"constraintZones": [],
"pointTowardsZones": [],
"eventMarkers": [
{
"name": "Lift L4",
"waypointRelativePos": 0.4547619047619047,
"endWaypointRelativePos": null,
"command": null
}
],
"globalConstraints": {
"maxVelocity": 4.0,
"maxAcceleration": 1.0,
"maxAngularVelocity": 540.0,
"maxAngularAcceleration": 400.0,
"nominalVoltage": 12.0,
"unlimited": false
},
"goalEndState": {
"velocity": 0,
"rotation": -121.60750224624898
},
"reversed": false,
"folder": null,
"idealStartingState": {
"velocity": 0,
"rotation": -90.0
},
"useDefaultConstraints": true
}

View File

@@ -0,0 +1,61 @@
{
"version": "2025.0",
"waypoints": [
{
"anchor": {
"x": 7.588217213114754,
"y": 3.9890368852459024
},
"prevControl": null,
"nextControl": {
"x": 6.916905737704918,
"y": 4.036987704918033
},
"isLocked": false,
"linkedName": null
},
{
"anchor": {
"x": 5.7,
"y": 4.3
},
"prevControl": {
"x": 6.347336065573771,
"y": 4.2640368852459005
},
"nextControl": null,
"isLocked": false,
"linkedName": "H"
}
],
"rotationTargets": [],
"constraintZones": [],
"pointTowardsZones": [],
"eventMarkers": [
{
"name": "Lift L4",
"waypointRelativePos": 0.08214624881291864,
"endWaypointRelativePos": null,
"command": null
}
],
"globalConstraints": {
"maxVelocity": 4.0,
"maxAcceleration": 1.0,
"maxAngularVelocity": 540.0,
"maxAngularAcceleration": 400.0,
"nominalVoltage": 12.0,
"unlimited": false
},
"goalEndState": {
"velocity": 0,
"rotation": 180.0
},
"reversed": false,
"folder": null,
"idealStartingState": {
"velocity": 0,
"rotation": 180.0
},
"useDefaultConstraints": true
}

View File

@@ -0,0 +1,70 @@
{
"version": "2025.0",
"waypoints": [
{
"anchor": {
"x": 7.600204918039607,
"y": 6.374590163938041
},
"prevControl": null,
"nextControl": {
"x": 7.600204918032786,
"y": 7.573360655737705
},
"isLocked": false,
"linkedName": null
},
{
"anchor": {
"x": 6.209631147540984,
"y": 6.074897540983606
},
"prevControl": {
"x": 7.120696721311476,
"y": 6.074897540983606
},
"nextControl": {
"x": 4.745363537952068,
"y": 6.074897540983606
},
"isLocked": false,
"linkedName": null
},
{
"anchor": {
"x": 4.8670081967213115,
"y": 6.973975409836065
},
"prevControl": {
"x": 5.826024590163935,
"y": 6.9979508196721305
},
"nextControl": null,
"isLocked": false,
"linkedName": null
}
],
"rotationTargets": [],
"constraintZones": [],
"pointTowardsZones": [],
"eventMarkers": [],
"globalConstraints": {
"maxVelocity": 4.0,
"maxAcceleration": 1.0,
"maxAngularVelocity": 540.0,
"maxAngularAcceleration": 400.0,
"nominalVoltage": 12.0,
"unlimited": false
},
"goalEndState": {
"velocity": 0,
"rotation": 90.0
},
"reversed": false,
"folder": null,
"idealStartingState": {
"velocity": 0,
"rotation": 180.0
},
"useDefaultConstraints": true
}

View File

@@ -0,0 +1,32 @@
{
"robotWidth": 0.8763,
"robotLength": 0.8763,
"holonomicMode": true,
"pathFolders": [],
"autoFolders": [],
"defaultMaxVel": 4.0,
"defaultMaxAccel": 1.0,
"defaultMaxAngVel": 540.0,
"defaultMaxAngAccel": 400.0,
"defaultNominalVoltage": 12.0,
"robotMass": 48.35,
"robotMOI": 6.883,
"robotTrackwidth": 0.546,
"driveWheelRadius": 0.038,
"driveGearing": 4.29,
"maxDriveSpeed": 5.45,
"driveMotorType": "krakenX60",
"driveCurrentLimit": 65.0,
"wheelCOF": 1.1,
"flModuleX": 0.31115,
"flModuleY": 0.31115,
"frModuleX": 0.31115,
"frModuleY": -0.31115,
"blModuleX": -0.31115,
"blModuleY": 0.31115,
"brModuleX": -0.31115,
"brModuleY": -0.31115,
"bumperOffsetX": 0.0,
"bumperOffsetY": 0.0,
"robotFeatures": []
}

View File

@@ -4,7 +4,15 @@
package frc.robot;
import edu.wpi.first.wpilibj.TimedRobot;
import org.littletonrobotics.junction.LoggedRobot;
import org.littletonrobotics.junction.LogFileUtil;
import org.littletonrobotics.junction.Logger;
import org.littletonrobotics.junction.networktables.NT4Publisher;
import org.littletonrobotics.junction.wpilog.WPILOGReader;
import org.littletonrobotics.junction.wpilog.WPILOGWriter;
import edu.wpi.first.wpilibj.PowerDistribution;
import edu.wpi.first.wpilibj.PowerDistribution.ModuleType;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.CommandScheduler;
@@ -14,11 +22,31 @@ import edu.wpi.first.wpilibj2.command.CommandScheduler;
* the package after creating this project, you must also update the build.gradle file in the
* project.
*/
public class Robot extends TimedRobot {
public class Robot extends LoggedRobot {
private Command m_autonomousCommand;
private RobotContainer m_robotContainer;
@SuppressWarnings("resource")
public Robot() {
Logger.recordMetadata("ProjectName", "2025_Robot_Code"); // Set a metadata value
if (isReal()) {
Logger.addDataReceiver(new WPILOGWriter()); // Log to a USB stick ("/U/logs")
Logger.addDataReceiver(new NT4Publisher()); // Publish data to NetworkTables
new PowerDistribution(1, ModuleType.kRev); // Enables power distribution logging
} else {
setUseTiming(false); // Run as fast as possible
String logPath = LogFileUtil.findReplayLog(); // Pull the replay log from AdvantageScope (or prompt the user)
Logger.setReplaySource(new WPILOGReader(logPath)); // Read replay log
Logger.addDataReceiver(new WPILOGWriter(LogFileUtil.addPathSuffix(logPath, "_sim"))); // Save outputs to a new log
}
Logger.start(); // Start logging! No more data receivers, replay sources, or metadata values may be added.
}
/**
* This function is run when the robot is first started up and should be used for any
* initialization code.

View File

@@ -4,27 +4,36 @@
package frc.robot;
import frc.robot.constants.ArmConstants;
import frc.robot.constants.ManipulatorPivotConstants;
import frc.robot.constants.ClimberPivotConstants;
import frc.robot.constants.ElevatorConstants;
import frc.robot.constants.ManipulatorConstants;
import frc.robot.constants.OIConstants;
import frc.robot.subsystems.Arm;
import frc.robot.constants.VisionConstants;
import frc.robot.subsystems.ManipulatorPivot;
import frc.robot.subsystems.Vision;
import frc.robot.subsystems.ClimberPivot;
import frc.robot.subsystems.ClimberRollers;
import frc.robot.subsystems.Drivetrain;
import frc.robot.subsystems.Elevator;
import frc.robot.subsystems.Indexer;
import frc.robot.subsystems.Manipulator;
import java.util.function.IntSupplier;
import com.pathplanner.lib.auto.AutoBuilder;
import com.pathplanner.lib.auto.NamedCommands;
import com.pathplanner.lib.events.EventTrigger;
import com.pathplanner.lib.path.EventMarker;
import edu.wpi.first.wpilibj.shuffleboard.BuiltInWidgets;
import edu.wpi.first.wpilibj.shuffleboard.Shuffleboard;
import edu.wpi.first.wpilibj.shuffleboard.ShuffleboardTab;
import edu.wpi.first.wpilibj.smartdashboard.SendableChooser;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.Commands;
import edu.wpi.first.wpilibj2.command.PrintCommand;
import edu.wpi.first.wpilibj2.command.button.CommandXboxController;
public class RobotContainer {
private Arm arm;
private ClimberPivot climberPivot;
private ClimberRollers climberRollers;
@@ -32,44 +41,73 @@ public class RobotContainer {
private Drivetrain drivetrain;
private Elevator elevator;
private Indexer indexer;
//private ElevatorSysID elevator;
private Manipulator manipulator;
private ManipulatorPivot manipulatorPivot;
private CommandXboxController driver;
private CommandXboxController operator;
public RobotContainer() {
arm = new Arm();
private SendableChooser<Command> autoChooser;
private Vision vision;
private IntSupplier closestTag;
public RobotContainer() {
climberPivot = new ClimberPivot();
climberRollers = new ClimberRollers();
drivetrain = new Drivetrain();
elevator = new Elevator();
vision = new Vision(drivetrain::getGyroValue);
indexer = new Indexer();
elevator = new Elevator();
//elevator = new ElevatorSysID();
manipulator = new Manipulator();
manipulatorPivot = new ManipulatorPivot();
configureNamedCommands();
driver = new CommandXboxController(OIConstants.kDriverControllerPort);
operator = new CommandXboxController(OIConstants.kOperatorControllerPort);
autoChooser = AutoBuilder.buildAutoChooser();
closestTag = drivetrain::getClosestTag;
configureButtonBindings();
//elevatorSysIDBindings();
//elevatorOnlyBindings();
configureShuffleboard();
}
private void configureButtonBindings() {
arm.setDefaultCommand(
arm.goToSetpoint(0, 1)
);
/*private void elevatorSysIDBindings() {
elevator.setDefaultCommand(elevator.maintainPosition());
operator.a().whileTrue(elevator.sysIdQuasistatic(Direction.kForward));
operator.b().whileTrue(elevator.sysIdQuasistatic(Direction.kReverse));
operator.x().whileTrue(elevator.sysIdDynamic(Direction.kForward));
operator.y().whileTrue(elevator.sysIdDynamic(Direction.kReverse));
}*/
private void elevatorOnlyBindings(){
elevator.setDefaultCommand(elevator.maintainPosition());
manipulatorPivot.setDefaultCommand(manipulatorPivot.maintainPosition());
driver.a().onTrue(safeMoveManipulator(ElevatorConstants.kL2Position, ManipulatorPivotConstants.kL2Position));
}
private void configureButtonBindings() {
//Default commands
climberPivot.setDefaultCommand(
climberPivot.goToAngle(0, 1)
climberPivot.runPivot(0)
);
climberRollers.setDefaultCommand(
@@ -78,148 +116,357 @@ public class RobotContainer {
drivetrain.setDefaultCommand(
drivetrain.drive(
driver::getLeftY,
driver::getLeftX,
driver::getRightX,
() -> Math.pow(driver.getLeftY(), 3),
() -> Math.pow(driver.getLeftX(), 3),
driver::getRightX, //Math.pow(driver.getRightX(), 3)
() -> true
)
);
elevator.setDefaultCommand(
elevator.runElevator(operator::getLeftY)
elevator.maintainPosition()
);
indexer.setDefaultCommand(
indexer.runIndexer(0)
manipulatorPivot.setDefaultCommand(
manipulatorPivot.maintainPosition()
);
manipulator.setDefaultCommand(
manipulator.runManipulator(0)
manipulator.runUntilCollected(
() -> 0.0
)
);
//Driver inputs
driver.start().whileTrue(
drivetrain.setXCommand()
);
driver.rightTrigger().whileTrue(
manipulator.runManipulator(1)
manipulator.runManipulator(() -> 0.35, true)
);
driver.leftTrigger().whileTrue(
manipulator.runUntilCollected(() -> 0.75)
);
driver.start().and(driver.back()).onTrue(
startingConfig()
);
driver.y().whileTrue(drivetrain.zeroHeading());
driver.povDown().whileTrue(climberPivot.runPivot(-0.5));
driver.povUp().whileTrue(climberPivot.runPivot(0.5));
driver.povLeft().whileTrue(climberRollers.runRoller(0.5));
driver.povRight().whileTrue(climberRollers.runRoller(-0.5));
driver.a().whileTrue(manipulator.runManipulator(() -> 0.5, false));
/*
driver.rightBumper().whileTrue(
drivetrain.goToPose(
() -> VisionConstants.reefSetpointsMap[closestTag.getAsInt()][2],
() -> VisionConstants.reefSetpointsMap[closestTag.getAsInt()][3],
() -> 360-VisionConstants.globalTagCoords[closestTag.getAsInt()][3]
)
);
driver.leftBumper().whileTrue(
drivetrain.goToPose(
() -> VisionConstants.reefSetpointsMap[closestTag.getAsInt()][0],
() -> VisionConstants.reefSetpointsMap[closestTag.getAsInt()][1],
() -> 360-VisionConstants.globalTagCoords[closestTag.getAsInt()][3]
)
);
*/
//Operator inputs
operator.povUp().onTrue(
moveManipulator(
ElevatorConstants.kElevatorL4Position,
ArmConstants.kArmL4Position
safeMoveManipulator(
ElevatorConstants.kL4Position,
ManipulatorPivotConstants.kL4Position
)
);
operator.povRight().onTrue(
moveManipulator(
ElevatorConstants.kElevatorL3Position,
ArmConstants.kArmL3Position
safeMoveManipulator(
ElevatorConstants.kL3Position,
ManipulatorPivotConstants.kL3Position
)
);
operator.povLeft().onTrue(
moveManipulator(
ElevatorConstants.kElevatorL2Position,
ArmConstants.kArmL2Position
safeMoveManipulator(
ElevatorConstants.kL2Position,
ManipulatorPivotConstants.kL2Position
)
);
operator.povDown().onTrue(
moveManipulator(
ElevatorConstants.kElevatorL1Position,
ArmConstants.kArmL1Position
safeMoveManipulator(
ElevatorConstants.kL1Position,
ManipulatorPivotConstants.kL1Position
)
);
operator.a().onTrue(
coralIntakeRoutine()
safeMoveManipulator(ElevatorConstants.kL1Position, 0.0)
);
operator.x().onTrue(
algaeIntakeRoutine(true)
safeMoveManipulator(ElevatorConstants.kL2AlgaePosition, ManipulatorPivotConstants.kL2AlgaePosition)
.alongWith(manipulator.runManipulator(() -> 0.5, false))
.until(driver.rightTrigger())
);
operator.b().onTrue(
algaeIntakeRoutine(false)
safeMoveManipulator(ElevatorConstants.kL3AlgaePosition, ManipulatorPivotConstants.kL3AlgaePosition)
.alongWith(manipulator.runManipulator(() -> 0.5, false))
.until(driver.rightTrigger())
);
operator.y().onTrue(moveWithAlgae(ElevatorConstants.kProcessorPosition, ManipulatorPivotConstants.kProcessorPosition)
.alongWith(manipulator.runManipulator(() -> 0.5, false))
.until(driver.rightTrigger())
);
}
private void configureNamedCommands() {
new EventTrigger("Lift L4").onTrue(safeMoveManipulator(ElevatorConstants.kL4Position, ManipulatorPivotConstants.kL4Position));
NamedCommands.registerCommand("Drivetrain Set X", drivetrain.setXCommand());
NamedCommands.registerCommand("Shoot Coral L4", manipulator.runManipulator(() -> 0.4, true).withTimeout(2));
NamedCommands.registerCommand("Collect Coral", manipulator.runUntilCollected(() -> 0.35));
NamedCommands.registerCommand("Lift L4", safeMoveManipulator(ElevatorConstants.kL4Position, ManipulatorPivotConstants.kL4Position));
NamedCommands.registerCommand("HP Pickup", safeMoveManipulator(ElevatorConstants.kCoralIntakePosition, ManipulatorPivotConstants.kCoralIntakePosition));
}
//creates tabs and transforms them on the shuffleboard
private void configureShuffleboard() {
ShuffleboardTab autoTab = Shuffleboard.getTab(OIConstants.kAutoTab);
ShuffleboardTab sensorTab = Shuffleboard.getTab(OIConstants.kSensorsTab);
sensorTab.addDouble("ElevatorPosition", elevator::getEncoderPosition)
Shuffleboard.selectTab(OIConstants.kAutoTab);
autoTab.add("Auto Selection", autoChooser)
.withSize(2, 1)
.withPosition(0, 0)
.withWidget(BuiltInWidgets.kTextView);
.withWidget(BuiltInWidgets.kComboBoxChooser);
sensorTab.addDouble("ArmPosition", arm::getEncoderPosition)
sensorTab.addDouble("Elevator Position", elevator::getEncoderPosition)
.withSize(2, 1)
.withPosition(0, 0)
.withWidget(BuiltInWidgets.kGraph);
sensorTab.addDouble("Manipulator Position", manipulatorPivot::getEncoderPosition)
.withSize(2, 1)
.withPosition(2, 0)
.withWidget(BuiltInWidgets.kTextView);
}
sensorTab.addDouble("Climber Pivot Position", climberPivot::getEncoderPosition)
.withSize(2, 1)
.withPosition(2, 1)
.withWidget(BuiltInWidgets.kTextView);
sensorTab.addDouble("gyro angle", drivetrain::getGyroValue)
.withSize(2, 1)
.withPosition(0, 1)
.withWidget(BuiltInWidgets.kTextView);
sensorTab.addBoolean("Coral Sensor", manipulator::getCoralBeamBreak)
.withSize(1, 1)
.withPosition(4, 0)
.withWidget(BuiltInWidgets.kBooleanBox);
sensorTab.addBoolean("bottom limit switch", elevator::getBottomLimitSwitch)
.withSize(1, 1)
.withPosition(4, 1)
.withWidget(BuiltInWidgets.kBooleanBox);
sensorTab.addDouble("ElevMotor1", elevator::getMotor1)
.withWidget(BuiltInWidgets.kGraph);
sensorTab.addDouble("ElevMotor2", elevator::getMotor2)
.withWidget(BuiltInWidgets.kGraph);
sensorTab.addDouble("Elevator setpoint up", elevator::getPIDUpSetpoint)
.withSize(1, 1)
.withPosition(5, 0)
.withWidget(BuiltInWidgets.kTextView);
sensorTab.addDouble("Elevator error up", elevator::getPIDUpError)
.withSize(1, 1)
.withPosition(5, 1)
.withWidget(BuiltInWidgets.kTextView);
sensorTab.addDouble("Elevator setpoint down", elevator::getPIDDownSetpoint)
.withSize(1, 1)
.withPosition(5, 0)
.withWidget(BuiltInWidgets.kTextView);
sensorTab.addDouble("Elevator error down", elevator::getPIDDownError)
.withSize(1, 1)
.withPosition(5, 1)
.withWidget(BuiltInWidgets.kTextView);
sensorTab.addDouble("manipulator output", manipulatorPivot::getPivotOutput);
sensorTab.addDouble("manipulator cg position", manipulatorPivot::getCGPosition);
sensorTab.addDouble("dt distance", drivetrain::driveDistance);
sensorTab.addDouble("velocity", drivetrain::getVelocity);
//sensorTab.add("odometry", drivetrain::getPose);
}
public Command getAutonomousCommand() {
return new PrintCommand("NO AUTO DEFINED");
return autoChooser.getSelected();
}
//teleop routines
/**
* Moves the elevator and arm to the coral intake position, then runs the manipulator until collected
* @return Moves the elevator and arm, then intakes coral
*/
@SuppressWarnings("unused")
private Command coralIntakeRoutine() {
return moveManipulator(
ElevatorConstants.kElevatorCoralIntakePosition,
ArmConstants.kArmCoralIntakePosition
ElevatorConstants.kCoralIntakePosition,
ManipulatorPivotConstants.kCoralIntakePosition
)
.andThen(manipulator.runUntilCollected(1, true));
}
.andThen(manipulator.runUntilCollected(() -> .5));
}
/**
* Moves the elevator and arm to the constant setpoints and runs the manipulator until collected
*
* @param l2 Is the algae on L2? (True = L2, False = L3)
* @return Moves the elevator and arm then intakes algae
*/
@SuppressWarnings("unused")
private Command algaeIntakeRoutine(boolean l2) {
return moveManipulator(
l2 ? ElevatorConstants.kElevatorL2AlgaePosition : ElevatorConstants.kElevatorL3AlgaePosition,
l2 ? ArmConstants.kArmL2AlgaePosition : ArmConstants.kArmL3AlgaePosition
l2 ? ElevatorConstants.kL2AlgaePosition : ElevatorConstants.kL3AlgaePosition,
l2 ? ManipulatorPivotConstants.kL2AlgaePosition : ManipulatorPivotConstants.kL3AlgaePosition
)
.andThen(manipulator.runUntilCollected(1, false));
.andThen(manipulator.runUntilCollected(() -> 1));
}
/**
* Moves the elevator and arm in different order based on target positions
*
* @param elevatorPosition The target position of the elevator
* @param armPosition The target rotation of the arm
* @return Moves the elevator and arm to the setpoints using the most efficient path
*/
private Command moveManipulator(double elevatorPosition, double armPosition) {
// If the elevator current and target positions are above the brace, or the arm current and target position is in
// front of the brace, move together
if ((elevator.isMotionSafe() && elevator.isMotionSafe(elevatorPosition)) || (arm.isMotionSafe() && arm.isMotionSafe(armPosition))) {
if ((elevator.isMotionSafe() && elevator.isMotionSafe(elevatorPosition)) || (manipulatorPivot.isMotionSafe() && manipulatorPivot.isMotionSafe(armPosition))) {
return moveManipulatorUtil(elevatorPosition, armPosition, false, false);
// If the target position is behind the brace, and the arm is not behind the brace, move the arm to a safe position first,
// then the elevator, then the arm again
} else if (!arm.isMotionSafe(armPosition) && !arm.isMotionSafe()) {
return moveManipulatorUtil(elevatorPosition, ArmConstants.kArmSafeStowPosition, false, true)
.andThen(arm.goToSetpoint(armPosition, 2));
} else if (!manipulatorPivot.isMotionSafe(armPosition) && !manipulatorPivot.isMotionSafe()) {
return moveManipulatorUtil(elevatorPosition, ManipulatorPivotConstants.kPivotSafeStowPosition, false, true)
.andThen(manipulatorPivot.goToSetpoint(() -> armPosition));
// If the target position is behind the brace, and the arm is behind the brace, move the elevator first, then the arm
} else if (!arm.isMotionSafe(armPosition) && arm.isMotionSafe()) {
} else if (!manipulatorPivot.isMotionSafe(armPosition) && manipulatorPivot.isMotionSafe()) {
return moveManipulatorUtil(elevatorPosition, armPosition, true, true);
// If the arm is behind the brace, move the arm first, then the elevator
} else if (!arm.isMotionSafe()) {
} else if (!manipulatorPivot.isMotionSafe()) {
return moveManipulatorUtil(elevatorPosition, armPosition, false, true);
// Catch all command that's safe regardless of arm and elevator positions
} else {
return moveManipulatorUtil(elevatorPosition, ArmConstants.kArmSafeStowPosition, false, true)
.andThen(arm.goToSetpoint(armPosition, 2));
return moveManipulatorUtil(elevatorPosition, ManipulatorPivotConstants.kPivotSafeStowPosition, false, true)
.andThen(manipulatorPivot.goToSetpoint(() -> armPosition));
}
}
/**
* Moves the elevator and arm in customizeable ways
*
* @param elevatorPosition The target elevator position
* @param armPosition The target arm position
* @param elevatorFirst Does the elevator move first? (True = Elevator first, False = Arm first)
* @param sequential Does the elevator and arm move separately? (True = .andThen, False = .alongWith)
* @return Moves the elevator and arm to the setpoints
*/
private Command moveManipulatorUtil(double elevatorPosition, double armPosition, boolean elevatorFirst, boolean sequential) {
/*if (elevatorPosition <= ElevatorConstants.kBracePosition || elevatorPosition == 0) {
armPosition = MathUtil.clamp(
armPosition,
0,
ManipulatorPivotConstants.kRotationLimit
);
}*/
return Commands.either(
Commands.either(
elevator.goToSetpoint(elevatorPosition, 2).andThen(arm.goToSetpoint(armPosition, 2)),
elevator.goToSetpoint(elevatorPosition, 2).alongWith(arm.goToSetpoint(armPosition, 2)),
elevator.goToSetpoint(() -> elevatorPosition).andThen(manipulatorPivot.goToSetpoint(() -> armPosition)),
elevator.goToSetpoint(() -> elevatorPosition).alongWith(manipulatorPivot.goToSetpoint(() -> armPosition)),
() -> sequential
),
Commands.either(
arm.goToSetpoint(armPosition, 2).andThen(elevator.goToSetpoint(elevatorPosition, 2)),
arm.goToSetpoint(armPosition, 2).alongWith(elevator.goToSetpoint(elevatorPosition, 2)),
manipulatorPivot.goToSetpoint(() -> armPosition).andThen(elevator.goToSetpoint(() -> elevatorPosition)),
manipulatorPivot.goToSetpoint(() -> armPosition).alongWith(elevator.goToSetpoint(() -> elevatorPosition)),
() -> sequential
),
() -> elevatorFirst
);
}
}
@SuppressWarnings("unused")
private Command manipulatorSafeTravel(double elevatorPosition, double armPosition, boolean isL4){
if(!isL4){
return Commands.sequence(
manipulatorPivot.goToSetpoint(() -> ManipulatorPivotConstants.kPivotSafeStowPosition),
elevator.goToSetpoint(() -> elevatorPosition),
manipulatorPivot.goToSetpoint(() -> armPosition));
}else{
return Commands.sequence(
manipulatorPivot.goToSetpoint(() -> ManipulatorPivotConstants.kPivotSafeStowPosition),
elevator.goToSetpoint(() -> elevatorPosition).until(() -> elevator.getEncoderPosition() > ElevatorConstants.kL4TransitionPosition),
Commands.parallel( manipulatorPivot.goToSetpoint(() -> armPosition)), elevator.goToSetpoint(() -> elevatorPosition));
}
}
/**
* Moves the arm and elevator in a safe way.
*
* @param elevatorPosition The target position of the elevator
* @param armPosition The target rotation of the arm
* @return Moves the elevator and arm to the setpoints
*/
private Command safeMoveManipulator(double elevatorPosition, double armPosition) {
/*return moveManipulatorUtil(elevatorPosition, ManipulatorPivotConstants.kPivotSafeStowPosition, false, true)
.deadlineFor(manipulatorPivot.goToSetpoint(() -> armPosition),
elevator.maintainPosition());*/
return manipulatorPivot.goToSetpoint(() -> ManipulatorPivotConstants.kPivotSafeStowPosition)
.andThen(elevator.goToSetpoint(() -> elevatorPosition), manipulatorPivot.goToSetpoint(() -> armPosition)
.raceWith(elevator.maintainPosition()));
}
private Command moveWithAlgae(double elevatorPosition, double armPosition) {
/*return moveManipulatorUtil(elevatorPosition, ManipulatorPivotConstants.kPivotSafeStowPosition, false, true)
.deadlineFor(manipulatorPivot.goToSetpoint(() -> armPosition),
elevator.maintainPosition());*/
return manipulatorPivot.goToSetpoint(() -> ManipulatorPivotConstants.kProcessorPosition)
.andThen(elevator.goToSetpoint(() -> elevatorPosition), manipulatorPivot.goToSetpoint(() -> armPosition)
.raceWith(elevator.maintainPosition()));
}
@SuppressWarnings("unused")
private Command startingConfig() {
return moveManipulatorUtil(0, 0, false, true)
.alongWith(climberPivot.climb(ClimberPivotConstants.kClimberStartingPosition, .1));
}
}

View File

@@ -1,25 +0,0 @@
package frc.robot.constants;
import com.ctre.phoenix6.configs.CANcoderConfiguration;
public class ArmConstants {
public static final int kArmMotorID = 0;
public static final int kCANcoderID = 0;
public static final double kEncoderConversionFactor = 0;
public static final double kArmMaxVelocity = 0;
public static final double kArmCoralIntakePosition = 0;
public static final double kArmL1Position = 0;
public static final double kArmL2Position = 0;
public static final double kArmL3Position = 0;
public static final double kArmL4Position = 0;
public static final double kArmL2AlgaePosition = 0;
public static final double kArmL3AlgaePosition = 0;
public static final double kArmSafeStowPosition = 0;
public static final CANcoderConfiguration canCoderConfig = new CANcoderConfiguration();
}

View File

@@ -1,18 +1,43 @@
package frc.robot.constants;
import java.io.IOException;
import org.json.simple.parser.ParseException;
import com.pathplanner.lib.config.PIDConstants;
import com.pathplanner.lib.config.RobotConfig;
import com.pathplanner.lib.controllers.PPHolonomicDriveController;
import edu.wpi.first.math.trajectory.TrapezoidProfile;
public class AutoConstants {
public static final double kMaxSpeedMetersPerSecond = 3;
public static final double kMaxAccelerationMetersPerSecondSquared = 3;
public static final double kMaxSpeedMetersPerSecond = 4;
public static final double kMaxAccelerationMetersPerSecondSquared = 1;
public static final double kMaxAngularSpeedRadiansPerSecond = Math.PI;
public static final double kMaxAngularSpeedRadiansPerSecondSquared = Math.PI;
public static final double kPXController = 1;
public static final double kPYController = 1;
public static final double kPThetaController = 1;
public static final double kPXController = 6;
public static final double kPYController = 6;
public static final double kPThetaController = 5.5;
// Constraint for the motion profiled robot angle controller
public static final TrapezoidProfile.Constraints kThetaControllerConstraints = new TrapezoidProfile.Constraints(
kMaxAngularSpeedRadiansPerSecond, kMaxAngularSpeedRadiansPerSecondSquared);
// TODO This is a constant being managed like a static rewriteable variable
public static RobotConfig kRobotConfig;
public static final PPHolonomicDriveController kPPDriveController = new PPHolonomicDriveController(
new PIDConstants(kPXController, 0, 0),
new PIDConstants(kPYController, 0, 0)
);
static {
try {
kRobotConfig = RobotConfig.fromGUISettings();
} catch (IOException | ParseException e) {
System.err.println("FAILED TO READ ROBOTCONFIG, WAS THE CONFIG SET UP IN PATHPLANNER?");
e.printStackTrace();
}
}
}

View File

@@ -1,7 +1,9 @@
package frc.robot.constants;
import com.revrobotics.spark.config.SparkMaxConfig;
public class ClimberPivotConstants {
public static final int kPivotMotorID = 0;
public static final int kPivotMotorID = 10;
public static final int kClimberLimitSwitchID = 0;
@@ -10,4 +12,9 @@ public class ClimberPivotConstants {
public static final double kPIDControllerP = 0;
public static final double kPIDControllerI = 0;
public static final double kPIDControllerD = 0;
public static final double kClimberClimbPosition = 0;
public static final double kClimberStartingPosition = 0;
public static final SparkMaxConfig motorConfig = new SparkMaxConfig();
}

View File

@@ -1,5 +1,9 @@
package frc.robot.constants;
import com.revrobotics.spark.config.SparkMaxConfig;
public class ClimberRollersConstants {
public static final int kRollerMotorID = 0;
public static final int kRollerMotorID = 9;
public static final SparkMaxConfig motorConfig = new SparkMaxConfig();
}

View File

@@ -13,19 +13,26 @@ import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine.Config;
public class DrivetrainConstants {
// Driving Parameters - Note that these are not the maximum capable speeds of
// the robot, rather the allowed maximum speeds
public static final double kMaxSpeedMetersPerSecond = 4.8;
public static final double kMaxSpeedMetersPerSecond = 5.5;
public static final double kMaxAngularSpeed = 2 * Math.PI; // radians per second
// Chassis configuration
public static final double kTrackWidth = Units.inchesToMeters(26.5);
public static final double kTrackWidth = Units.inchesToMeters(24.5);
// Distance between centers of right and left wheels on robot
public static final double kWheelBase = Units.inchesToMeters(26.5);
public static final double kWheelBase = Units.inchesToMeters(24.5);
// Angular offsets of the modules relative to the chassis in radians
public static final double kFrontLeftChassisAngularOffset = -Math.PI / 2;
public static final double kFrontRightChassisAngularOffset = 0;
public static final double kBackLeftChassisAngularOffset = Math.PI;
public static final double kBackRightChassisAngularOffset = Math.PI / 2;
/*
public static final double kFrontLeftChassisAngularOffset = Math.PI;
public static final double kFrontRightChassisAngularOffset = -Math.PI / 2;
public static final double kBackLeftChassisAngularOffset = Math.PI / 2;
public static final double kBackRightChassisAngularOffset = 0;
*/
public static final double kFrontLeftChassisAngularOffset = 0;
public static final double kFrontRightChassisAngularOffset = Math.PI / 2;
public static final double kBackLeftChassisAngularOffset = -Math.PI / 2;
public static final double kBackRightChassisAngularOffset = Math.PI;
// 1, 7, 10 is the default for these three values
public static final double kSysIDDrivingRampRate = 1;
@@ -38,17 +45,23 @@ public class DrivetrainConstants {
public static final double kSysIDTurningTimeout = 10;
// SPARK MAX CAN IDs
public static final int kFrontLeftDrivingCanId = 11;
public static final int kRearLeftDrivingCanId = 13;
public static final int kFrontRightDrivingCanId = 15;
public static final int kRearRightDrivingCanId = 17;
public static final int kFrontLeftDrivingCanId = 0;
public static final int kRearLeftDrivingCanId = 2;
public static final int kFrontRightDrivingCanId = 1;
public static final int kRearRightDrivingCanId = 3;
public static final int kFrontLeftTurningCanId = 10;
public static final int kRearLeftTurningCanId = 12;
public static final int kFrontRightTurningCanId = 14;
public static final int kRearRightTurningCanId = 16;
public static final int kFrontLeftTurningCanId = 2;
public static final int kRearLeftTurningCanId = 4;
public static final int kFrontRightTurningCanId = 7;
public static final int kRearRightTurningCanId = 5;
public static final boolean kGyroReversed = true;
public static final double kHeadingP = 0.0;
public static final double kXTranslationP = 0.0;
public static final double kYTranslationP = 0.0;
public static final boolean kGyroReversed = false;
// YOU SHOULDN'T NEED TO CHANGE ANYTHING BELOW THIS LINE UNLESS YOU'RE ADDING A NEW CONFIGURATION ITEM

View File

@@ -11,42 +11,52 @@ import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine;
import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine.Config;
public class ElevatorConstants {
public static final int kElevatorMotor1ID = 0;
public static final int kElevatorMotor2ID = 0;
public static final int kElevatorMotor1ID = 8;
public static final int kElevatorMotor2ID = 6;
public static final int kTopLimitSwitchID = 0;
public static final int kBottomLimitSwitchID = 0;
public static final double kEncoderConversionFactor = 0;
// 60/11 gearing multiplied by circumference of sprocket multiplied by 2 for carriage position
public static final double kEncoderPositionConversionFactor = 11.0/60.0 * (22.0*0.25) * 2.0;
public static final double kEncoderVelocityConversionFactor = kEncoderPositionConversionFactor / 60;
public static final int kMotorAmpsMax = 0;
public static final int kCurrentLimit = 40;
public static final double kPositionControllerP = 0;
public static final double kPositionControllerI = 0;
public static final double kPositionControllerD = 0;
public static final double kVelocityControllerP = 0;
public static final double kVelocityControllerI = 0;
public static final double kVelocityControllerD = 0;
public static final double kUpControllerP = 5.6;//7; //
public static final double kUpControllerI = 0;
public static final double kUpControllerD = 0.28;//0.28
public static final double kFeedForwardS = 0;
public static final double kFeedForwardG = 0;
public static final double kFeedForwardV = 0;
public static final double kDownControllerP = 5.6;//7; //
public static final double kDownControllerI = 0;
public static final double kDownControllerD = 0.57;//0.175;//0.1;//0.35
public static final double kAllowedError = 1;
public static final double kElevatorMaxVelocity = 0;
public static final double kFeedForwardS = (0.95 - 0.2)/2*0.8; /* kG too high - kG too low / 2 0.95, 0.2 */
public static final double kFeedForwardG = (0.95 + 0.2)/2; /* kG too high + kG too low / 2 */ // calculated value 0.6
public static final double kFeedForwardV = 0.12; // calculated value 0.12
public static final double kElevatorCoralIntakePosition = 0;
public static final double kElevatorL1Position = 0;
public static final double kElevatorL2Position = 0;
public static final double kElevatorL3Position = 0;
public static final double kElevatorL4Position = 0;
public static final double kElevatorL2AlgaePosition = 0;
public static final double kElevatorL3AlgaePosition = 0;
public static final double kElevatorBracePosition = 0;
public static final double kMaxVelocity = 150.0; // 120 inches per second (COOKING) calculated max is 184 in/s
public static final double kMaxAcceleration = 240; // 400 inches per second^2 (also COOKING) calculated max is 600 in/s^2
public static final double kCoralIntakePosition = 0;
public static final double kL1Position = 0;
public static final double kL2Position = 9;
public static final double kL3Position = 23.0;
public static final double kL4Position = 50.5;
public static final double kL4TransitionPosition = 40.0;
public static final double kL2AlgaePosition = 23.0;
public static final double kL3AlgaePosition = 39.0;
public static final double kProcessorPosition = 4.0;
/**The position of the top of the elevator brace */
public static final double kBracePosition = 0;
public static final double kMaxHeight = 51.0; //actual is 51
public static final double kVoltageLimit = 7;
// 1, 7, 10 are the defaults for these, change as necessary
public static final double kSysIDRampRate = 1;
public static final double kSysIDStepVolts = 7;
public static final double kSysIDRampRate = .25;
public static final double kSysIDStepVolts = 3;
public static final double kSysIDTimeout = 10;
public static final IdleMode kIdleMode = IdleMode.kBrake;
@@ -63,10 +73,11 @@ public class ElevatorConstants {
static {
motorConfig
.smartCurrentLimit(kMotorAmpsMax)
.idleMode(kIdleMode);
.smartCurrentLimit(kCurrentLimit)
.idleMode(kIdleMode)
.inverted(true);
motorConfig.encoder
.positionConversionFactor(kEncoderConversionFactor)
.velocityConversionFactor(kEncoderConversionFactor / 60.0);
.positionConversionFactor(kEncoderPositionConversionFactor)
.velocityConversionFactor(kEncoderVelocityConversionFactor);
}
}

View File

@@ -1,6 +0,0 @@
package frc.robot.constants;
public class IndexerConstants {
public static final int kIndexerMotorID = 0;
public static final int kIndexerBeamBreakID = 0;
}

View File

@@ -1,7 +1,10 @@
package frc.robot.constants;
import com.revrobotics.spark.config.SparkMaxConfig;
public class ManipulatorConstants {
public static final int kManipulatorMotorID = 0;
public static final int kCoralBeamBreakID = 0;
public static final int kAlgaeBeamBreakID = 0;
public static final int kManipulatorMotorID = 12;
public static final int kCoralBeamBreakID = 2;
public static final SparkMaxConfig motorConfig = new SparkMaxConfig();
}

View File

@@ -0,0 +1,81 @@
package frc.robot.constants;
import static edu.wpi.first.units.Units.Volts;
import static edu.wpi.first.units.Units.Second;
import static edu.wpi.first.units.Units.Seconds;
import com.revrobotics.spark.config.SparkMaxConfig;
import com.revrobotics.spark.config.SparkBaseConfig.IdleMode;
import edu.wpi.first.math.util.Units;
import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine;
import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine.Config;
public class ManipulatorPivotConstants {
public static final int kPivotMotorID = 1;
public static final int kMotorCurrentMax = 40;
public static final double kPivotConversion = 2 * Math.PI;
public static final double kPivotMaxVelocity = 2 * Math.PI;
public static final double kPositionalP = 4;
public static final double kPositionalI = 0;
public static final double kPositionalD = 0;
public static final double kPositionalTolerance = Units.degreesToRadians(1.5);
public static final double kFeedForwardS = (0.3-0.19) / 2 * 0.8; //upper: 0.3 lower: 0.19
public static final double kFeedForwardG = (0.3+0.19) / 2; // calculated value 0.41
public static final double kFeedForwardV = 0.68; //calculated value 0.68
public static final double kFFGravityOffset = Units.degreesToRadians(135.0);
public static final double kMaxAcceleration = Units.degreesToRadians(1000.0); // degrees per second^2 calculated max = 2100
public static final double kMaxVelocity = Units.degreesToRadians(100.0); // degrees per second calculated max = 168
public static final double kEncoderOffset = 0.780;
public static final double kCoralIntakePosition = Units.degreesToRadians(175.0);
public static final double kL1Position = Units.degreesToRadians(0.0);
public static final double kL2Position = Units.degreesToRadians(22.0);
public static final double kL3Position = Units.degreesToRadians(22.0);
public static final double kL4Position = Units.degreesToRadians(45.0);
public static final double kL2AlgaePosition = Units.degreesToRadians(175.0);
public static final double kL3AlgaePosition = Units.degreesToRadians(175.0);
public static final double kProcessorPosition = Units.degreesToRadians(175.0);
public static final double kNetPosition = Units.degreesToRadians(175.0);
/**The closest position to the elevator brace without hitting it */
public static final double kPivotSafeStowPosition = Units.degreesToRadians(71.0);
/**The forward rotation limit of the pivot */
public static final double kRotationLimit = Units.degreesToRadians(175.0);
public static final double kSysIDRampRate = 1;
public static final double kSysIDStepVolts = 7;
public static final double kSysIDTimeout = 10;
public static final IdleMode kIdleMode = IdleMode.kBrake;
// YOU SHOULDN'T NEED TO CHANGE ANYTHING BELOW THIS LINE UNLESS YOU'RE ADDING A NEW CONFIG
public static final SysIdRoutine.Config kSysIDConfig = new Config(
Volts.of(kSysIDRampRate).per(Second),
Volts.of(kSysIDStepVolts),
Seconds.of(kSysIDTimeout)
);
public static final SparkMaxConfig motorConfig = new SparkMaxConfig();
static {
motorConfig
.smartCurrentLimit(kMotorCurrentMax)
.idleMode(kIdleMode)
.inverted(true);
motorConfig.absoluteEncoder
.positionConversionFactor(kPivotConversion)
.inverted(false)
.zeroOffset(kEncoderOffset);
}
}

View File

@@ -2,6 +2,12 @@ package frc.robot.constants;
import com.revrobotics.spark.config.ClosedLoopConfig.FeedbackSensor;
import com.revrobotics.spark.config.SparkBaseConfig.IdleMode;
import com.ctre.phoenix6.configs.CurrentLimitsConfigs;
import com.ctre.phoenix6.configs.FeedbackConfigs;
import com.ctre.phoenix6.configs.MotorOutputConfigs;
import com.ctre.phoenix6.configs.Slot0Configs;
import com.ctre.phoenix6.signals.InvertedValue;
import com.ctre.phoenix6.signals.NeutralModeValue;
import com.revrobotics.spark.config.SparkMaxConfig;
public class ModuleConstants {
@@ -16,56 +22,80 @@ public class ModuleConstants {
public static final double kWheelCircumferenceMeters = kWheelDiameterMeters * Math.PI;
// 45 teeth on the wheel's bevel gear, 22 teeth on the first-stage spur gear, 15
// teeth on the bevel pinion
public static final double kDrivingMotorReduction = (45.0 * 22) / (kDrivingMotorPinionTeeth * 15);
public static final double kDrivingMotorReduction = (45.0 * 20) / (kDrivingMotorPinionTeeth * 15);
public static final double kDriveWheelFreeSpeedRps = (kDrivingMotorFreeSpeedRps * kWheelCircumferenceMeters)
/ kDrivingMotorReduction;
public static final int kDriveMotorCurrentLimit = 40;
public static final double kDrivingFactor = kWheelDiameterMeters * Math.PI / kDrivingMotorReduction;
public static final double kTurningFactor = 2 * Math.PI;
public static final double kDrivingVelocityFeedForward = 1 / kDriveWheelFreeSpeedRps;
public static final double kDriveP = .04;
public static final double kDriveI = 0;
public static final double kDriveD = 0;
public static final double kDriveS = 0;
public static final double kDriveV = kDrivingVelocityFeedForward;
public static final double kDriveA = 0;
public static final double kTurnP = 1;
public static final double kTurnI = 0;
public static final double kTurnD = 0;
public static final int kDriveMotorStatorCurrentLimit = 100;
public static final int kDriveMotorSupplyCurrentLimit = 65;
public static final int kTurnMotorCurrentLimit = 20;
public static final IdleMode kTurnIdleMode = IdleMode.kBrake;
public static final InvertedValue kDriveInversionState = InvertedValue.CounterClockwise_Positive;
public static final NeutralModeValue kDriveIdleMode = NeutralModeValue.Brake;
// YOU SHOULDN'T NEED TO CHANGE ANYTHING BELOW THIS LINE UNLESS YOU'RE ADDING A NEW CONFIGURATION ITEM
public static final SparkMaxConfig drivingConfig = new SparkMaxConfig();
public static final SparkMaxConfig turningConfig = new SparkMaxConfig();
static {
// Use module constants to calculate conversion factors and feed forward gain.
double drivingFactor = kWheelDiameterMeters * Math.PI / kDrivingMotorReduction;
double turningFactor = 2 * Math.PI;
double drivingVelocityFeedForward = 1 / kDriveWheelFreeSpeedRps;
public static final FeedbackConfigs kDriveFeedConfig = new FeedbackConfigs();
public static final CurrentLimitsConfigs kDriveCurrentLimitConfig = new CurrentLimitsConfigs();
public static final MotorOutputConfigs kDriveMotorConfig = new MotorOutputConfigs();
public static final Slot0Configs kDriveSlot0Config = new Slot0Configs();
drivingConfig
.idleMode(IdleMode.kBrake)
.smartCurrentLimit(kDriveMotorCurrentLimit);
drivingConfig.encoder
.positionConversionFactor(drivingFactor) // meters
.velocityConversionFactor(drivingFactor / 60.0); // meters per second
drivingConfig.closedLoop
.feedbackSensor(FeedbackSensor.kPrimaryEncoder)
// These are example gains you may need to them for your own robot!
.pid(0.04, 0, 0)
.velocityFF(drivingVelocityFeedForward)
.outputRange(-1, 1);
static {
kDriveFeedConfig.SensorToMechanismRatio = kDrivingMotorReduction;
kDriveCurrentLimitConfig.StatorCurrentLimitEnable = true;
kDriveCurrentLimitConfig.SupplyCurrentLimitEnable = true;
kDriveCurrentLimitConfig.StatorCurrentLimit = kDriveMotorStatorCurrentLimit;
kDriveCurrentLimitConfig.SupplyCurrentLimit = kDriveMotorSupplyCurrentLimit;
kDriveMotorConfig.Inverted = kDriveInversionState;
kDriveMotorConfig.NeutralMode = kDriveIdleMode;
kDriveSlot0Config.kP = kDriveP;
kDriveSlot0Config.kI = kDriveI;
kDriveSlot0Config.kD = kDriveD;
kDriveSlot0Config.kS = kDriveS;
kDriveSlot0Config.kV = kDriveV;
kDriveSlot0Config.kA = kDriveA;
turningConfig
.idleMode(IdleMode.kBrake)
.smartCurrentLimit(20);
.idleMode(kTurnIdleMode)
.smartCurrentLimit(kTurnMotorCurrentLimit);
turningConfig.absoluteEncoder
// Invert the turning encoder, since the output shaft rotates in the opposite
// direction of the steering motor in the MAXSwerve Module.
.inverted(true)
.positionConversionFactor(turningFactor) // radians
.velocityConversionFactor(turningFactor / 60.0); // radians per second
.positionConversionFactor(kTurningFactor) // radians
.velocityConversionFactor(kTurningFactor / 60.0); // radians per second
turningConfig.closedLoop
.feedbackSensor(FeedbackSensor.kAbsoluteEncoder)
// These are example gains you may need to them for your own robot!
.pid(1, 0, 0)
.pid(kTurnP, kTurnI, kTurnD)
.outputRange(-1, 1)
// Enable PID wrap around for the turning motor. This will allow the PID
// controller to go through 0 to get to the setpoint i.e. going from 350 degrees
// to 10 degrees will go through 0 rather than the other direction which is a
// longer route.
.positionWrappingEnabled(true)
.positionWrappingInputRange(0, turningFactor);
.positionWrappingInputRange(0, kTurningFactor);
}
}

View File

@@ -1,5 +1,5 @@
package frc.robot.constants;
public class NeoMotorConstants {
public static final double kFreeSpeedRpm = 5676;
public static final double kFreeSpeedRpm = 6000; //for kraken not neo
}

View File

@@ -6,5 +6,6 @@ public class OIConstants {
public static final double kDriveDeadband = 0.05;
public static final String kSensorsTab = "SensorsTab";
public static final String kAutoTab = "Auto Tab";
public static final String kSensorsTab = "Sensors Tab";
}

View File

@@ -0,0 +1,62 @@
package frc.robot.constants;
public class VisionConstants {
// global coordinate map of all tags. index is the tag id.
// Units: inches and degrees. {x, y, z, z-rotation, y-rotation}
// This is for ANDYMARK FIELDS found in NE. Not for WELDED FIELDS.
public static final double[][] globalTagCoords = {{},
{656.98, 24.73, 58.50, 126.0, 0},
{656.98, 291.90, 58.50, 234.0, 0},
{452.4, 316.21, 51.25, 270, 0},
{365.2, 241.44, 73.54, 0, 30},
{365.2, 75.19, 73.54, 0, 30},
{530.49, 129.97, 12.13, 300, 0},
{546.87, 158.3, 12.13, 0, 0},
{530.49, 186.63, 12.13, 60, 0},
{497.77, 186.63, 12.13, 120, 0},
{481.39, 158.3, 12.13, 180, 0},
{497.77, 129.97, 12.13, 240, 0},
{33.9, 24.73, 58.5, 54, 0},
{33.9, 291.9, 58.5, 306, 0},
{325.68, 241.44, 73.54, 180, 30},
{325.68, 75.19, 73.54, 180, 30},
{238.49, 0.42, 51.25, 90, 0},
{160.39, 129.97, 12.13, 240, 0},
{144.00, 158.3, 12.13, 180, 0},
{160.39, 186.63, 12.13, 120, 0},
{193.1, 186.63, 12.13, 60, 0},
{209.49, 158.3, 12.13, 0, 0},
{193.1, 129.97, 12.13, 300, 0},
};
//map of coral placing setpoints based on the tag that is on the same reef face
// and the on the left or right branch of that side of the reef
// <tag_number, {left_x, left_y, right_x, right_y}>
public static final double[][] reefSetpointsMap = {
{},
{},
{},
{},
{},
{},
{4.993+12.272, 2.816, 5.272+12.272, 2.996},//6
{5.789+12.272, 3.862, 5.789+12.272, 4.194},
{5.275+12.272, 5.075, 4.991+12.272, 5.246},
{3.986+12.272, 5.24, 3.701+12.272, 5.076},
{3.183+12.272, 4.191, 3.183, 3.857},
{3.703+12.272, 3.975, 3.982+12.272, 2.806},//11
{},
{},
{},
{},
{},
{3.703, 3.975, 3.982, 2.806},
{3.183, 4.191, 3.183, 3.857},
{3.986, 5.24, 3.701, 5.076},
{5.275, 5.075, 4.991, 5.246},
{5.789, 3.862, 5.789, 4.194},
{4.993, 2.816, 5.272, 2.996}
};
}

View File

@@ -1,94 +0,0 @@
package frc.robot.subsystems;
import java.util.function.DoubleSupplier;
import com.ctre.phoenix6.hardware.CANcoder;
import com.revrobotics.spark.SparkMax;
import com.revrobotics.spark.SparkLowLevel.MotorType;
import edu.wpi.first.math.controller.ArmFeedforward;
import edu.wpi.first.math.controller.PIDController;
import edu.wpi.first.math.util.Units;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.SubsystemBase;
import frc.robot.constants.ArmConstants;
public class Arm extends SubsystemBase {
private SparkMax armMotor;
private CANcoder canCoder;
private PIDController positionController;
private PIDController velocityController;
private ArmFeedforward feedForward;
public Arm() {
armMotor = new SparkMax(
ArmConstants.kArmMotorID,
MotorType.kBrushless
);
canCoder = new CANcoder(ArmConstants.kCANcoderID);
}
/**
* Returns whether or not the motion is safe relative to the encoder's current position
* and the arm safe stow position
*
* @return Is the motion safe
*/
public boolean isMotionSafe() {
return isMotionSafe(getEncoderPosition());
}
/**
* Returns whether or not the motion is safe relative to some target position and the
* arm safe stow position
*
* @param motionTarget The target position to determine the safety of
* @return Is the motion safe
*/
public boolean isMotionSafe(double motionTarget) {
return motionTarget > ArmConstants.kArmSafeStowPosition;
}
//manual command that keeps ouput speed consistent no matter the direction
public Command runArm(DoubleSupplier speed) {
return run(() -> {
double realSpeedTarget = speed.getAsDouble() * ArmConstants.kArmMaxVelocity;
double voltsOut = velocityController.calculate(
getEncoderVelocity(),
realSpeedTarget
) + feedForward.calculate(
getEncoderPosition(),
getEncoderVelocity()
);
armMotor.setVoltage(voltsOut);
});
}
public Command goToSetpoint(double setpoint, double timeout) {
return run(() -> {
double voltsOut = positionController.calculate(
getEncoderPosition(),
setpoint
) + feedForward.calculate(
getEncoderPosition(),
getEncoderVelocity()
);
armMotor.setVoltage(voltsOut);
}).until(positionController::atSetpoint).withTimeout(timeout);
}
public double getEncoderPosition() {
return Units.rotationsToRadians(canCoder.getPosition().getValueAsDouble());
}
public double getEncoderVelocity() {
return Units.rotationsToRadians(canCoder.getVelocity().getValueAsDouble());
}
}

View File

@@ -2,10 +2,10 @@ package frc.robot.subsystems;
import com.revrobotics.RelativeEncoder;
import com.revrobotics.spark.SparkMax;
import com.revrobotics.spark.SparkBase.PersistMode;
import com.revrobotics.spark.SparkBase.ResetMode;
import com.revrobotics.spark.SparkLowLevel.MotorType;
import edu.wpi.first.math.controller.PIDController;
import edu.wpi.first.wpilibj.DigitalInput;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.SubsystemBase;
import frc.robot.constants.ClimberPivotConstants;
@@ -15,25 +15,19 @@ public class ClimberPivot extends SubsystemBase {
private RelativeEncoder neoEncoder;
private DigitalInput cageLimitSwitch;
private PIDController pidController;
public ClimberPivot() {
pivotMotor = new SparkMax(
ClimberPivotConstants.kPivotMotorID,
MotorType.kBrushless
);
neoEncoder = pivotMotor.getEncoder();
cageLimitSwitch = new DigitalInput(ClimberPivotConstants.kClimberLimitSwitchID);
pidController = new PIDController(
ClimberPivotConstants.kPIDControllerP,
ClimberPivotConstants.kPIDControllerI,
ClimberPivotConstants.kPIDControllerD
pivotMotor.configure(
ClimberPivotConstants.motorConfig,
ResetMode.kResetSafeParameters,
PersistMode.kPersistParameters
);
neoEncoder = pivotMotor.getEncoder();
}
public Command runPivot(double speed) {
@@ -42,18 +36,20 @@ public class ClimberPivot extends SubsystemBase {
});
}
public Command goToAngle(double setpoint, double timeout) {
/**
* Runs the climber until it is at setpoint
*
* @param speed The speed at which the pivot runs
* @param setpoint The target position of the climber
* @return Sets the motor speed until at the target position
*/
public Command climb(double setpoint, double speed) {
return run(() -> {
pivotMotor.set(
pidController.calculate(
neoEncoder.getPosition(),
setpoint
)
);
}).withTimeout(timeout);
pivotMotor.set(speed);
}).until(() -> neoEncoder.getPosition() >= setpoint);
}
public boolean getCageLimitSwitch() {
return cageLimitSwitch.get();
public double getEncoderPosition() {
return neoEncoder.getPosition();
}
}
}

View File

@@ -1,12 +1,15 @@
package frc.robot.subsystems;
import com.revrobotics.spark.SparkMax;
import com.revrobotics.spark.SparkBase.PersistMode;
import com.revrobotics.spark.SparkBase.ResetMode;
import com.revrobotics.spark.SparkLowLevel.MotorType;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.SubsystemBase;
import frc.robot.constants.ClimberRollersConstants;
//TODO Figure out a way to detect if we're at the top of the cage
public class ClimberRollers extends SubsystemBase {
private SparkMax rollerMotor;
@@ -15,8 +18,20 @@ public class ClimberRollers extends SubsystemBase {
ClimberRollersConstants.kRollerMotorID,
MotorType.kBrushless
);
rollerMotor.configure(
ClimberRollersConstants.motorConfig,
ResetMode.kResetSafeParameters,
PersistMode.kPersistParameters
);
}
/**
* Runs the rollers at a set speed
*
* @param speed The speed in which the roller runs
* @return Runs the rollers at a set speed
*/
public Command runRoller(double speed) {
return run(() -> {
rollerMotor.set(speed);

View File

@@ -4,23 +4,35 @@
package frc.robot.subsystems;
import java.io.File;
import java.util.Optional;
import java.util.function.BooleanSupplier;
import java.util.function.DoubleSupplier;
import com.ctre.phoenix6.Orchestra;
import com.pathplanner.lib.auto.AutoBuilder;
import com.studica.frc.AHRS;
import com.studica.frc.AHRS.NavXComType;
import edu.wpi.first.math.MathUtil;
import edu.wpi.first.math.controller.PIDController;
import edu.wpi.first.math.estimator.SwerveDrivePoseEstimator;
import edu.wpi.first.math.geometry.Pose2d;
import edu.wpi.first.math.geometry.Rotation2d;
import edu.wpi.first.math.kinematics.ChassisSpeeds;
import edu.wpi.first.math.kinematics.SwerveDriveKinematics;
import edu.wpi.first.math.kinematics.SwerveDriveOdometry;
import edu.wpi.first.math.kinematics.SwerveModulePosition;
import edu.wpi.first.math.kinematics.SwerveModuleState;
import edu.wpi.first.wpilibj.ADIS16470_IMU;
import edu.wpi.first.wpilibj.ADIS16470_IMU.IMUAxis;
import edu.wpi.first.wpilibj.DriverStation;
import edu.wpi.first.wpilibj.DriverStation.Alliance;
import edu.wpi.first.wpilibj.Filesystem;
import edu.wpi.first.wpilibj.Timer;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.SubsystemBase;
import frc.robot.constants.AutoConstants;
import frc.robot.constants.DrivetrainConstants;
import frc.robot.constants.OIConstants;
import frc.robot.constants.VisionConstants;
public class Drivetrain extends SubsystemBase {
// Create MAXSwerveModules
@@ -30,10 +42,19 @@ public class Drivetrain extends SubsystemBase {
protected MAXSwerveModule m_rearRight;
// The gyro sensor
private ADIS16470_IMU m_gyro;
private AHRS gyro;
// Odometry class for tracking robot pose
private SwerveDriveOdometry m_odometry;
private SwerveDrivePoseEstimator m_estimator;
private Vision vision;
public Orchestra m_orchestra = new Orchestra();
private Timer musicTimer = new Timer();
private PIDController pidHeading;
private PIDController pidTranslationX;
private PIDController pidTranslationY;
/** Creates a new DriveSubsystem. */
public Drivetrain() {
@@ -61,30 +82,113 @@ public class Drivetrain extends SubsystemBase {
DrivetrainConstants.kBackRightChassisAngularOffset
);
m_gyro = new ADIS16470_IMU();
gyro = new AHRS(NavXComType.kMXP_SPI);
m_odometry = new SwerveDriveOdometry(
m_estimator = new SwerveDrivePoseEstimator(
DrivetrainConstants.kDriveKinematics,
Rotation2d.fromDegrees(m_gyro.getAngle(IMUAxis.kZ)),
Rotation2d.fromDegrees(getGyroValue()),
new SwerveModulePosition[] {
m_frontLeft.getPosition(),
m_frontRight.getPosition(),
m_rearLeft.getPosition(),
m_rearRight.getPosition()
});
},
new Pose2d()
);
pidHeading = new PIDController(DrivetrainConstants.kHeadingP,0,0);
pidHeading.enableContinuousInput(-180, 180);
pidTranslationX = new PIDController(DrivetrainConstants.kXTranslationP,0,0);
pidTranslationY = new PIDController(DrivetrainConstants.kYTranslationP,0,0);
AutoBuilder.configure(
this::getPose,
this::resetOdometry,
this::getCurrentChassisSpeeds,
this::driveWithChassisSpeeds,
AutoConstants.kPPDriveController,
AutoConstants.kRobotConfig,
() -> {
Optional<DriverStation.Alliance> alliance = DriverStation.getAlliance();
if (alliance.isPresent()) {
return alliance.get() == DriverStation.Alliance.Red;
}
return false;
},
this
);
m_orchestra.loadMusic(Filesystem.getDeployDirectory()
.toPath()
.resolve("Orchestra" + File.separator + "doomE1M1.chrp")
.toString());
// Add a single device to the orchestra
m_orchestra.addInstrument(m_frontLeft.getDrivingMotor(), 0);
m_orchestra.addInstrument(m_frontRight.getDrivingMotor(), 1);
m_orchestra.addInstrument(m_rearLeft.getDrivingMotor(), 2);
m_orchestra.addInstrument(m_rearRight.getDrivingMotor(), 3);
m_orchestra.play();
musicTimer.reset();
musicTimer.start();
}
@Override
public void periodic() {
// Update the odometry in the periodic block
m_odometry.update(
Rotation2d.fromDegrees(m_gyro.getAngle(IMUAxis.kZ)),
m_estimator.update(
Rotation2d.fromDegrees(getGyroValue()),
new SwerveModulePosition[] {
m_frontLeft.getPosition(),
m_frontRight.getPosition(),
m_rearLeft.getPosition(),
m_rearRight.getPosition()
});
// if the detected tags match your alliances reef tags use their pose estimates
/*
if(vision.getOrangeClosestTag() >= 6 || vision.getOrangeClosestTag() <= 11 || DriverStation.getAlliance().equals(Alliance.Red)){
m_estimator.addVisionMeasurement(vision.getOrangeGlobalPose(), vision.getOrangeTimeStamp());
}else if(vision.getOrangeClosestTag() >= 17 || vision.getOrangeClosestTag() <= 22 || DriverStation.getAlliance().equals(Alliance.Blue)){
m_estimator.addVisionMeasurement(vision.getOrangeGlobalPose(), vision.getOrangeTimeStamp());
}
if(vision.getBlackClosestTag() >= 6 || vision.getBlackClosestTag() <= 11 || DriverStation.getAlliance().equals(Alliance.Red)){
m_estimator.addVisionMeasurement(vision.getBlackGlobalPose(), vision.getBlackTimeStamp());
}else if(vision.getBlackClosestTag() >= 17 || vision.getBlackClosestTag() <= 22 || DriverStation.getAlliance().equals(Alliance.Blue)){
m_estimator.addVisionMeasurement(vision.getBlackGlobalPose(), vision.getBlackTimeStamp());
}
*/
if(musicTimer.get()>4){
if (m_orchestra.isPlaying()) {
m_orchestra.stop();
}
musicTimer.stop();
musicTimer.reset();
}
}
public ChassisSpeeds getCurrentChassisSpeeds() {
return DrivetrainConstants.kDriveKinematics.toChassisSpeeds(
m_frontLeft.getState(),
m_frontRight.getState(),
m_rearLeft.getState(),
m_rearRight.getState()
);
}
public void driveWithChassisSpeeds(ChassisSpeeds speeds) {
ChassisSpeeds discreteSpeeds = ChassisSpeeds.discretize(speeds, 0.2);
SwerveModuleState[] newStates = DrivetrainConstants.kDriveKinematics.toSwerveModuleStates(discreteSpeeds);
SwerveDriveKinematics.desaturateWheelSpeeds(newStates, DrivetrainConstants.kMaxSpeedMetersPerSecond);
setModuleStates(newStates);
}
/**
@@ -93,7 +197,7 @@ public class Drivetrain extends SubsystemBase {
* @return The pose.
*/
public Pose2d getPose() {
return m_odometry.getPoseMeters();
return m_estimator.getEstimatedPosition();
}
/**
@@ -102,14 +206,7 @@ public class Drivetrain extends SubsystemBase {
* @param pose The pose to which to set the odometry.
*/
public void resetOdometry(Pose2d pose) {
m_odometry.resetPosition(
Rotation2d.fromDegrees(m_gyro.getAngle(IMUAxis.kZ)),
new SwerveModulePosition[] {
m_frontLeft.getPosition(),
m_frontRight.getPosition(),
m_rearLeft.getPosition(),
m_rearRight.getPosition()
},
m_estimator.resetPose(
pose
);
}
@@ -144,7 +241,7 @@ public class Drivetrain extends SubsystemBase {
var swerveModuleStates = DrivetrainConstants.kDriveKinematics.toSwerveModuleStates(
fieldRelative
? ChassisSpeeds.fromFieldRelativeSpeeds(xSpeedDelivered, ySpeedDelivered, rotDelivered,
Rotation2d.fromDegrees(m_gyro.getAngle(IMUAxis.kZ)))
Rotation2d.fromDegrees(getGyroValue()))
: new ChassisSpeeds(xSpeedDelivered, ySpeedDelivered, rotDelivered));
SwerveDriveKinematics.desaturateWheelSpeeds(
swerveModuleStates, DrivetrainConstants.kMaxSpeedMetersPerSecond);
@@ -160,6 +257,50 @@ public class Drivetrain extends SubsystemBase {
});
}
public Command goToPose(DoubleSupplier xSetpoint, DoubleSupplier ySetpoint, DoubleSupplier headingSetpoint){
return run(() -> {
drive(pidTranslationX.calculate(m_estimator.getEstimatedPosition().getX(), xSetpoint.getAsDouble()),
pidTranslationY.calculate(m_estimator.getEstimatedPosition().getY(), ySetpoint.getAsDouble()),
pidHeading.calculate(getHeading(), headingSetpoint.getAsDouble()),
true);
});
}
public int getClosestTag(){
if(DriverStation.getAlliance().equals(DriverStation.Alliance.Blue)){
int closestTag = 17;
double closestTagDist = Math.sqrt(Math.pow(getPose().getX()-VisionConstants.globalTagCoords[17][0], 2)
+ Math.pow(getPose().getY()-VisionConstants.globalTagCoords[17][1], 2));
for(int i = 17; i <= 22; ++i){
double distance = Math.sqrt(Math.pow(getPose().getX()-VisionConstants.globalTagCoords[i][0], 2)
+ Math.pow(getPose().getY()-VisionConstants.globalTagCoords[i][1], 2));
if(distance < closestTagDist){
closestTag = i;
closestTagDist = distance;
}
}
return closestTag;
}else{
int closestTag = 6;
double closestTagDist = Math.sqrt(Math.pow(getPose().getX()-VisionConstants.globalTagCoords[17][0], 2)
+ Math.pow(getPose().getY()-VisionConstants.globalTagCoords[17][1], 2));
for(int i = 6; i <= 11; ++i){
double distance = Math.sqrt(Math.pow(getPose().getX()-VisionConstants.globalTagCoords[i][0], 2)
+ Math.pow(getPose().getY()-VisionConstants.globalTagCoords[i][1], 2));
if(distance < closestTagDist){
closestTag = i;
closestTagDist = distance;
}
}
return closestTag;
}
}
/**
* Sets the wheels into an X formation to prevent movement.
*/
@@ -192,9 +333,16 @@ public class Drivetrain extends SubsystemBase {
m_rearRight.resetEncoders();
}
/** Zeroes the heading of the robot. */
public void zeroHeading() {
m_gyro.reset();
/** Zeroes the heading of the robot.
* @return */
public Command zeroHeading() {
return run(() -> {
gyro.reset();
});
}
public double getGyroValue() {
return gyro.getAngle() * (DrivetrainConstants.kGyroReversed ? -1 : 1);
}
/**
@@ -203,7 +351,7 @@ public class Drivetrain extends SubsystemBase {
* @return the robot's heading in degrees, from -180 to 180
*/
public double getHeading() {
return Rotation2d.fromDegrees(m_gyro.getAngle(IMUAxis.kZ)).getDegrees();
return Rotation2d.fromDegrees(getGyroValue()).getDegrees();
}
/**
@@ -212,6 +360,18 @@ public class Drivetrain extends SubsystemBase {
* @return The turn rate of the robot, in degrees per second
*/
public double getTurnRate() {
return m_gyro.getRate(IMUAxis.kZ) * (DrivetrainConstants.kGyroReversed ? -1.0 : 1.0);
return gyro.getRate() * (DrivetrainConstants.kGyroReversed ? -1.0 : 1.0);
}
public void addVisionMeasurement(Pose2d pose, double timestamp){
m_estimator.addVisionMeasurement(pose, timestamp);
}
public double driveDistance(){
return m_frontLeft.getTotalDist();
}
public double getVelocity(){
return m_frontLeft.getState().speedMetersPerSecond;
}
}

View File

@@ -8,6 +8,7 @@ import com.revrobotics.spark.SparkBase.PersistMode;
import com.revrobotics.spark.SparkBase.ResetMode;
import com.revrobotics.spark.SparkLowLevel.MotorType;
import edu.wpi.first.math.MathUtil;
import edu.wpi.first.math.controller.ElevatorFeedforward;
import edu.wpi.first.math.controller.PIDController;
import edu.wpi.first.wpilibj.DigitalInput;
@@ -23,8 +24,8 @@ public class Elevator extends SubsystemBase {
private DigitalInput bottomLimitSwitch;
private PIDController positionController;
private PIDController velocityController;
private PIDController pidControllerUp;
private PIDController pidControllerDown;
private ElevatorFeedforward feedForward;
@@ -57,17 +58,25 @@ public class Elevator extends SubsystemBase {
ElevatorConstants.kBottomLimitSwitchID
);
positionController = new PIDController(
ElevatorConstants.kPositionControllerP,
ElevatorConstants.kPositionControllerI,
ElevatorConstants.kPositionControllerD
pidControllerDown = new PIDController(
ElevatorConstants.kDownControllerP,
ElevatorConstants.kDownControllerI,
ElevatorConstants.kDownControllerD
);
pidControllerDown.setSetpoint(0);
velocityController = new PIDController(
ElevatorConstants.kVelocityControllerP,
ElevatorConstants.kVelocityControllerI,
ElevatorConstants.kVelocityControllerD
pidControllerDown.setTolerance(ElevatorConstants.kAllowedError);
pidControllerUp = new PIDController(
ElevatorConstants.kUpControllerP,
ElevatorConstants.kUpControllerI,
ElevatorConstants.kUpControllerD
);
pidControllerUp.setSetpoint(0);
pidControllerUp.setTolerance(ElevatorConstants.kAllowedError);
feedForward = new ElevatorFeedforward(
ElevatorConstants.kFeedForwardS,
@@ -76,6 +85,13 @@ public class Elevator extends SubsystemBase {
);
}
@Override
public void periodic() {
if (!getBottomLimitSwitch()) {
encoder.setPosition(0);
}
}
/**
* Returns whether or not the motion is safe relative to the encoder's current position
* and the elevator brace position
@@ -94,39 +110,227 @@ public class Elevator extends SubsystemBase {
* @return Is the motion safe
*/
public boolean isMotionSafe(double motionTarget) {
return motionTarget > ElevatorConstants.kElevatorBracePosition;
return motionTarget > ElevatorConstants.kBracePosition;
}
//manual command that keeps ouput speed consistent no matter the direction
public Command runElevator(DoubleSupplier speed) {
return run(() -> {
double realSpeedTarget = speed.getAsDouble() * ElevatorConstants.kElevatorMaxVelocity;
double voltsOut = velocityController.calculate(
encoder.getVelocity(),
realSpeedTarget
) + feedForward.calculate(realSpeedTarget);
elevatorMotor1.setVoltage(voltsOut);
}).until(bottomLimitSwitch::get);
}
//go to setpoint command
public Command goToSetpoint(double setpoint, double timeout) {
/**
* A manual translation command that uses feed forward calculation to maintain position
*
* @param speed The speed at which the elevator translates
* @return Sets motor voltage to translate the elevator and maintain position
*/
public Command runManualElevator(DoubleSupplier speed) {
return run(() -> {
double voltsOut = positionController.calculate(
encoder.getPosition(),
setpoint
) + feedForward.calculate(0);
double desired = speed.getAsDouble();
elevatorMotor1.setVoltage(voltsOut);
}).until(
() -> positionController.atSetpoint() || bottomLimitSwitch.get()
).withTimeout(timeout);
if(Math.abs(MathUtil.applyDeadband(desired, .05)) > 0) {
elevatorMotor1.set(
speed.getAsDouble()
);
} else {
elevatorMotor1.setVoltage(feedForward.calculate(0));
}
});
}
/**
* A command that will use the feed forward to hold up the elevator.
* Used for feed forward tuning.
*
* @return Sets motor voltage based on feed forward calculation.
*/
public Command maintainPosition() {
return startRun(() -> {
/*
pidControllerUp.reset();
pidControllerDown.reset();
*/
},
() -> {
/*
double upOutput = pidControllerUp.calculate(getEncoderPosition());
double downOutput = pidControllerDown.calculate(getEncoderPosition());
if(pidControllerUp.getSetpoint()>encoder.getPosition())
elevatorMotor1.setVoltage( MathUtil.clamp(
upOutput + feedForward.calculate(0), -1, 1)
);
else{
elevatorMotor1.setVoltage(
MathUtil.clamp(
downOutput + feedForward.calculate(0), -1, 1)
);
}
*/
elevatorMotor1.setVoltage(
feedForward.calculate(0)
);
});
}
/**
* Moves the elevator to a target destination (setpoint).
*
* @param setpoint Target destination of the subsystem
* @param timeout Time to achieve the setpoint before quitting
* @return Sets motor voltage to achieve the target destination
*/
public Command goToSetpoint(DoubleSupplier setpoint) {
if (setpoint.getAsDouble() == 0) {
return startRun(() -> {
pidControllerUp.reset();
pidControllerDown.reset();
pidControllerUp.setSetpoint(setpoint.getAsDouble());
pidControllerDown.setSetpoint(setpoint.getAsDouble());
},
() -> {
double upOutput = pidControllerUp.calculate(getEncoderPosition());
double downOutput = pidControllerDown.calculate(getEncoderPosition());
if(setpoint.getAsDouble()>encoder.getPosition())
elevatorMotor1.setVoltage( MathUtil.clamp(
upOutput + feedForward.calculate(0), ElevatorConstants.kVoltageLimit * -1, ElevatorConstants.kVoltageLimit)
);
else{
elevatorMotor1.setVoltage(
MathUtil.clamp(
downOutput + feedForward.calculate(0), ElevatorConstants.kVoltageLimit * -1, ElevatorConstants.kVoltageLimit)
);
}
}).until(() -> pidControllerUp.atSetpoint() || pidControllerDown.atSetpoint())
.andThen(runManualElevator(() -> -.1)
.until(() -> encoder.getPosition() == 0));
} else {
return startRun(() -> {
pidControllerUp.reset();
pidControllerDown.reset();
pidControllerUp.setSetpoint(setpoint.getAsDouble());
pidControllerDown.setSetpoint(setpoint.getAsDouble());
},
() -> {
double upOutput = pidControllerUp.calculate(getEncoderPosition());
double downOutput = pidControllerDown.calculate(getEncoderPosition());
if(setpoint.getAsDouble()>encoder.getPosition())
elevatorMotor1.setVoltage( MathUtil.clamp(
upOutput + feedForward.calculate(0), ElevatorConstants.kVoltageLimit * -1, ElevatorConstants.kVoltageLimit)
);
else{
elevatorMotor1.setVoltage(
MathUtil.clamp(
downOutput + feedForward.calculate(0), ElevatorConstants.kVoltageLimit * -1, ElevatorConstants.kVoltageLimit)
);
}
}).until(() -> pidControllerUp.atSetpoint() || pidControllerDown.atSetpoint());
}
/*
elevatorMotor1.setVoltage(
pidController.calculate(
encoder.getPosition(),
clampedSetpoint
) + feedForward.calculate(0)
);
*/
/*
if (!pidController.atSetpoint()) {
elevatorMotor1.setVoltage(
pidController.calculate(
encoder.getPosition(),
clampedSetpoint
) + feedForward.calculate(0)
);
} else {
elevatorMotor1.setVoltage(
feedForward.calculate(0)
);
}
});*/
}
/*
if(encoder.getPosition() >= setpoint.getAsDouble()){
elevatorMotor1.setVoltage(
pidControllerUp.calculate(
encoder.getPosition(),
clampedSetpoint
) + feedForward.calculate(pidControllerUp.getSetpoint().velocity)
);
}else if(encoder.getPosition() <= setpoint.getAsDouble()){
elevatorMotor1.setVoltage(
pidControllerDown.calculate(
encoder.getPosition(),
clampedSetpoint
) + feedForward.calculate(pidControllerDown.getSetpoint().velocity)
);
}
*/
/**
* Returns the current encoder position
*
* @return Current encoder position
*/
public double getEncoderPosition() {
return encoder.getPosition();
}
}
/**
* Returns the value of the bottom limit switch on the elevator (false = disabled, true = enabled)
*
* @return The value of bottomLimitSwitch
*/
public boolean getBottomLimitSwitch() {
return bottomLimitSwitch.get();
}
/**
* Returns the motor's output current
*
* @return Motor output current
*/
public double getMotor1() {
return elevatorMotor1.getAppliedOutput()*elevatorMotor1.getBusVoltage();
}
/**
* Returns the motor's output current
*
* @return Motor output current
*/
public double getMotor2() {
return elevatorMotor2.getAppliedOutput()*elevatorMotor2.getBusVoltage();
}
public double getPIDUpSetpoint() {
return pidControllerUp.getSetpoint();
}
public double getPIDUpError() {
return pidControllerUp.getError();
}
public double getPIDDownSetpoint() {
return pidControllerDown.getSetpoint();
}
public double getPIDDownError() {
return pidControllerDown.getError();
}
}

View File

@@ -1,36 +0,0 @@
package frc.robot.subsystems;
import com.revrobotics.spark.SparkMax;
import com.revrobotics.spark.SparkLowLevel.MotorType;
import edu.wpi.first.wpilibj.DigitalInput;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.SubsystemBase;
import frc.robot.constants.IndexerConstants;
public class Indexer extends SubsystemBase {
private SparkMax indexerMotor;
private DigitalInput indexerBeamBreak;
public Indexer() {
indexerMotor = new SparkMax(
IndexerConstants.kIndexerMotorID,
MotorType.kBrushless
);
indexerBeamBreak = new DigitalInput(IndexerConstants.kIndexerBeamBreakID);
}
public Command runIndexer(double speed) {
return run(() -> {
indexerMotor.set(speed);
});
}
public Command indexCoral(double speed) {
return run(() -> {
indexerMotor.set(speed);
}).until(indexerBeamBreak::get);
}
}

View File

@@ -15,117 +15,135 @@ import com.revrobotics.spark.SparkBase.ControlType;
import com.revrobotics.spark.SparkBase.PersistMode;
import com.revrobotics.spark.SparkBase.ResetMode;
import com.revrobotics.spark.SparkLowLevel.MotorType;
import com.ctre.phoenix6.controls.VelocityVoltage;
import com.ctre.phoenix6.hardware.TalonFX;
import com.revrobotics.AbsoluteEncoder;
import com.revrobotics.RelativeEncoder;
import frc.robot.constants.ModuleConstants;
public class MAXSwerveModule {
private final SparkMax m_drivingSpark;
private final SparkMax m_turningSpark;
private final TalonFX m_drive;
private final SparkMax m_turningSpark;
private final RelativeEncoder m_drivingEncoder;
private final AbsoluteEncoder m_turningEncoder;
private final AbsoluteEncoder m_turningEncoder;
private final SparkClosedLoopController m_drivingClosedLoopController;
private final SparkClosedLoopController m_turningClosedLoopController;
private final SparkClosedLoopController m_turningClosedLoopController;
private double m_chassisAngularOffset = 0;
private SwerveModuleState m_desiredState = new SwerveModuleState(0.0, new Rotation2d());
private final VelocityVoltage driveVelocityRequest;
/**
* Constructs a MAXSwerveModule and configures the driving and turning motor,
* encoder, and PID controller. This configuration is specific to the REV
* MAXSwerve Module built with NEOs, SPARKS MAX, and a Through Bore
* Encoder.
*/
public MAXSwerveModule(int drivingCANId, int turningCANId, double chassisAngularOffset) {
m_drivingSpark = new SparkMax(drivingCANId, MotorType.kBrushless);
m_turningSpark = new SparkMax(turningCANId, MotorType.kBrushless);
private double m_chassisAngularOffset = 0;
private SwerveModuleState m_desiredState = new SwerveModuleState(0.0, new Rotation2d());
m_drivingEncoder = m_drivingSpark.getEncoder();
m_turningEncoder = m_turningSpark.getAbsoluteEncoder();
/**
* Constructs a MAXSwerveModule and configures the driving and turning motor,
* encoder, and PID controller. This configuration is specific to the REV
* MAXSwerve Module built with NEOs, SPARKS MAX, and a Through Bore
* Encoder.
*/
public MAXSwerveModule(int drivingCANId, int turningCANId, double chassisAngularOffset) {
m_drive = new TalonFX(drivingCANId);
m_turningSpark = new SparkMax(turningCANId, MotorType.kBrushless);
m_drivingClosedLoopController = m_drivingSpark.getClosedLoopController();
m_turningClosedLoopController = m_turningSpark.getClosedLoopController();
m_turningEncoder = m_turningSpark.getAbsoluteEncoder();
// Apply the respective configurations to the SPARKS. Reset parameters before
// applying the configuration to bring the SPARK to a known good state. Persist
// the settings to the SPARK to avoid losing them on a power cycle.
m_drivingSpark.configure(ModuleConstants.drivingConfig, ResetMode.kResetSafeParameters,
PersistMode.kPersistParameters);
m_turningSpark.configure(ModuleConstants.turningConfig, ResetMode.kResetSafeParameters,
PersistMode.kPersistParameters);
m_turningClosedLoopController = m_turningSpark.getClosedLoopController();
m_chassisAngularOffset = chassisAngularOffset;
m_desiredState.angle = new Rotation2d(m_turningEncoder.getPosition());
m_drivingEncoder.setPosition(0);
}
driveVelocityRequest = new VelocityVoltage(0).withSlot(0);
/**
* Returns the current state of the module.
*
* @return The current state of the module.
*/
public SwerveModuleState getState() {
// Apply chassis angular offset to the encoder position to get the position
// relative to the chassis.
return new SwerveModuleState(m_drivingEncoder.getVelocity(),
new Rotation2d(m_turningEncoder.getPosition() - m_chassisAngularOffset));
}
// Apply the respective configurations to the SPARKS. Reset parameters before
// applying the configuration to bring the SPARK to a known good state. Persist
// the settings to the SPARK to avoid losing them on a power cycle.
m_drive.getConfigurator().apply(ModuleConstants.kDriveCurrentLimitConfig);
m_drive.getConfigurator().apply(ModuleConstants.kDriveFeedConfig);
m_drive.getConfigurator().apply(ModuleConstants.kDriveMotorConfig);
m_drive.getConfigurator().apply(ModuleConstants.kDriveSlot0Config);
/**
* Returns the current position of the module.
*
* @return The current position of the module.
*/
public SwerveModulePosition getPosition() {
// Apply chassis angular offset to the encoder position to get the position
// relative to the chassis.
return new SwerveModulePosition(
m_drivingEncoder.getPosition(),
new Rotation2d(m_turningEncoder.getPosition() - m_chassisAngularOffset));
}
m_turningSpark.configure(ModuleConstants.turningConfig, ResetMode.kResetSafeParameters,
PersistMode.kPersistParameters);
/**
* Sets the desired state for the module.
*
* @param desiredState Desired state with speed and angle.
*/
public void setDesiredState(SwerveModuleState desiredState) {
// Apply chassis angular offset to the desired state.
SwerveModuleState correctedDesiredState = new SwerveModuleState();
correctedDesiredState.speedMetersPerSecond = desiredState.speedMetersPerSecond;
correctedDesiredState.angle = desiredState.angle.plus(Rotation2d.fromRadians(m_chassisAngularOffset));
m_chassisAngularOffset = chassisAngularOffset;
m_desiredState.angle = new Rotation2d(m_turningEncoder.getPosition());
m_drive.setPosition(0);
}
// Optimize the reference state to avoid spinning further than 90 degrees.
correctedDesiredState.optimize(new Rotation2d(m_turningEncoder.getPosition()));
/**
* Returns the current state of the module.
*
* @return The current state of the module.
*/
public SwerveModuleState getState() {
// Apply chassis angular offset to the encoder position to get the position
// relative to the chassis.
return new SwerveModuleState(m_drive.getVelocity().getValueAsDouble() * ModuleConstants.kWheelCircumferenceMeters,
new Rotation2d(m_turningEncoder.getPosition() - m_chassisAngularOffset));
}
// Command driving and turning SPARKS towards their respective setpoints.
m_drivingClosedLoopController.setReference(correctedDesiredState.speedMetersPerSecond, ControlType.kVelocity);
m_turningClosedLoopController.setReference(correctedDesiredState.angle.getRadians(), ControlType.kPosition);
/**
* Returns the current position of the module.
*
* @return The current position of the module.
*/
public SwerveModulePosition getPosition() {
// Apply chassis angular offset to the encoder position to get the position
// relative to the chassis.
return new SwerveModulePosition(m_drive.getPosition().getValueAsDouble() * ModuleConstants.kWheelCircumferenceMeters,
new Rotation2d(m_turningEncoder.getPosition() - m_chassisAngularOffset));
}
m_desiredState = desiredState;
}
/**
* Sets the desired state for the module.
*
* @param desiredState Desired state with speed and angle.
*/
public void setDesiredState(SwerveModuleState desiredState) {
// Apply chassis angular offset to the desired state.
SwerveModuleState correctedDesiredState = new SwerveModuleState();
correctedDesiredState.speedMetersPerSecond = desiredState.speedMetersPerSecond;
correctedDesiredState.angle = desiredState.angle.plus(Rotation2d.fromRadians(m_chassisAngularOffset));
public void setVoltageDrive(double voltage){
m_drivingSpark.setVoltage(voltage);
}
// Optimize the reference state to avoid spinning further than 90 degrees.
correctedDesiredState.optimize(new Rotation2d(m_turningEncoder.getPosition()));
public void setVoltageTurn(double voltage) {
m_turningSpark.setVoltage(voltage);
}
// Command driving and turning SPARKS towards their respective setpoints.
m_drive.setControl(
driveVelocityRequest.withVelocity(
correctedDesiredState.speedMetersPerSecond / ModuleConstants.kWheelCircumferenceMeters
).withFeedForward(
correctedDesiredState.speedMetersPerSecond / ModuleConstants.kWheelCircumferenceMeters
)
);
public double getVoltageDrive() {
return m_drivingSpark.get() * RobotController.getBatteryVoltage();
}
m_turningClosedLoopController.setReference(correctedDesiredState.angle.getRadians(), ControlType.kPosition);
public double getVoltageTurn() {
return m_turningSpark.get() * RobotController.getBatteryVoltage();
}
m_desiredState = desiredState;
}
/** Zeroes all the SwerveModule encoders. */
public void resetEncoders() {
m_drivingEncoder.setPosition(0);
}
public void setVoltageDrive(double voltage){
m_drive.setVoltage(voltage);
}
public void setVoltageTurn(double voltage) {
m_turningSpark.setVoltage(voltage);
}
public double getVoltageDrive() {
return m_drive.get() * RobotController.getBatteryVoltage();
}
public double getVoltageTurn() {
return m_turningSpark.get() * RobotController.getBatteryVoltage();
}
public TalonFX getDrivingMotor(){
return m_drive;
}
/** Zeroes all the SwerveModule encoders. */
public void resetEncoders() {
m_drive.setPosition(0);
}
public double getTotalDist(){
return m_drive.getPosition().getValueAsDouble() * ModuleConstants.kWheelCircumferenceMeters;
}
}

View File

@@ -1,6 +1,10 @@
package frc.robot.subsystems;
import java.util.function.DoubleSupplier;
import com.revrobotics.spark.SparkMax;
import com.revrobotics.spark.SparkBase.PersistMode;
import com.revrobotics.spark.SparkBase.ResetMode;
import com.revrobotics.spark.SparkLowLevel.MotorType;
import edu.wpi.first.wpilibj.DigitalInput;
@@ -12,7 +16,6 @@ public class Manipulator extends SubsystemBase {
private SparkMax manipulatorMotor;
private DigitalInput coralBeamBreak;
private DigitalInput algaeBeamBreak;
public Manipulator() {
manipulatorMotor = new SparkMax(
@@ -20,19 +23,78 @@ public class Manipulator extends SubsystemBase {
MotorType.kBrushless
);
manipulatorMotor.configure(
ManipulatorConstants.motorConfig,
ResetMode.kResetSafeParameters,
PersistMode.kPersistParameters
);
coralBeamBreak = new DigitalInput(ManipulatorConstants.kCoralBeamBreakID);
algaeBeamBreak = new DigitalInput(ManipulatorConstants.kAlgaeBeamBreakID);
}
public Command runManipulator(double speed) {
/**
* The default command for the manipulator that either stops the manipulator or slowly
* runs the manipulator to retain the algae
*
* @return Returns a command that sets the speed of the motor
*/
public Command defaultCommand() {
return run(() -> {
manipulatorMotor.set(speed);
runUntilCollected(() -> 0.1);
});
}
/**
* Runs the manipulator at a set speed with the direction based on the coral parameter
*
* @param speed The speed at which the manipulator runs
* @param coral Is the manipulator manipulating a coral? (True = Coral, False = Algae)
* @return Returns a command that sets the speed of the motor
*/
public Command runManipulator(DoubleSupplier speed, boolean coral) {
return run(() -> {
manipulatorMotor.set(
coral ? speed.getAsDouble() : speed.getAsDouble() * -1
);
});
}
public Command runUntilCollected(double speed, boolean coral) {
/**
* Runs the manipulator until either the algae or coral beam break reads true
*
* @param speed The speed at which the manipulator is run
* @param coral Is the object a coral? (True = Coral, False = Algae)
* @return Returns a command that sets the speed of the motor
*/
public Command runUntilCollected(DoubleSupplier speed) {
return run(() -> {
manipulatorMotor.set(coral ? speed : speed * -1);
}).until(() -> coralBeamBreak.get() || algaeBeamBreak.get());
manipulatorMotor.set(
speed.getAsDouble()
);
}).until(() -> !coralBeamBreak.get());
}
public Command retractCommand(DoubleSupplier speed){
return run(() -> {
manipulatorMotor.set(-speed.getAsDouble());
}
).until(() -> coralBeamBreak.get());
}
/**
* Runs the manipulator in a way that will bring the coral to a reliable holding position
*
* @return Returns a command that will position the coral to a known location
*/
public Command indexCoral() {
return run(() -> {
runUntilCollected(() -> 0.5)
.andThen(runManipulator(() -> .1, false))
.until(() -> getCoralBeamBreak());
});
}
public boolean getCoralBeamBreak() {
return coralBeamBreak.get();
}
}

View File

@@ -0,0 +1,183 @@
package frc.robot.subsystems;
import com.revrobotics.spark.SparkMax;
import java.util.function.DoubleSupplier;
import com.revrobotics.spark.SparkAbsoluteEncoder;
import com.revrobotics.spark.SparkBase.PersistMode;
import com.revrobotics.spark.SparkBase.ResetMode;
import com.revrobotics.spark.SparkLowLevel.MotorType;
import edu.wpi.first.math.MathUtil;
import edu.wpi.first.math.controller.ArmFeedforward;
import edu.wpi.first.math.controller.PIDController;
import edu.wpi.first.math.util.Units;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.SubsystemBase;
import frc.robot.constants.ManipulatorPivotConstants;
public class ManipulatorPivot extends SubsystemBase {
protected SparkMax pivotMotor;
private SparkAbsoluteEncoder encoder;
private ArmFeedforward feedForward;
private PIDController pidController;
public ManipulatorPivot() {
pivotMotor = new SparkMax(
ManipulatorPivotConstants.kPivotMotorID,
MotorType.kBrushless
);
pivotMotor.configure(
ManipulatorPivotConstants.motorConfig,
ResetMode.kResetSafeParameters,
PersistMode.kPersistParameters
);
encoder = pivotMotor.getAbsoluteEncoder();
pidController = new PIDController(
ManipulatorPivotConstants.kPositionalP,
ManipulatorPivotConstants.kPositionalI,
ManipulatorPivotConstants.kPositionalD
);
pidController.setSetpoint(0);
pidController.enableContinuousInput(0, 180);
feedForward = new ArmFeedforward(
ManipulatorPivotConstants.kFeedForwardS,
ManipulatorPivotConstants.kFeedForwardG,
ManipulatorPivotConstants.kFeedForwardV
);
}
/**
* Returns whether or not the motion is safe relative to the encoder's current position
* and the arm safe stow position
*
* @return Is the motion safe
*/
public boolean isMotionSafe() {
return isMotionSafe(getEncoderPosition());
}
/**
* Returns whether or not the motion is safe relative to some target position and the
* arm safe stow position
*
* @param motionTarget The target position to determine the safety of
* @return Is the motion safe
*/
public boolean isMotionSafe(double motionTarget) {
return motionTarget > ManipulatorPivotConstants.kPivotSafeStowPosition;
}
/**
* Manual ManipulatorPivot command that sets the motor based on speed
*
* @param speed The speed to set the motor
* @return A command that sets the motor speed
*/
public Command runManualPivot(DoubleSupplier speed) {
return run(() -> {
pivotMotor.set(speed.getAsDouble());
});
}
/**
* Moves the arm to a target destination (setpoint)
*
* @param setpoint Target destination of the subsystem
* @param timeout Time to achieve the setpoint before quitting
* @return Sets motor voltage to achieve the target destination
*/
public Command goToSetpoint(DoubleSupplier setpoint) {
return startRun(() -> {
pidController.setSetpoint(setpoint.getAsDouble());
pidController.reset();
},
() -> {
/*
if (!pidController.atSetpoint()) {
pivotMotor.setVoltage(
pidController.calculate(
encoder.getPosition(),
setpoint.getAsDouble()
) - feedForward.calculate(-encoder.getPosition() + ManipulatorPivotConstants.kFFGravityOffset, 0)
);
} else {
pivotMotor.setVoltage(
-feedForward.calculate(-encoder.getPosition() + ManipulatorPivotConstants.kFFGravityOffset, 0)
);
}
*/
pivotMotor.setVoltage(
pidController.calculate(
encoder.getPosition(),
setpoint.getAsDouble()
) - feedForward.calculate(-encoder.getPosition() + ManipulatorPivotConstants.kFFGravityOffset, 0)
);
}).until(() -> pidController.atSetpoint());
}
public Command maintainPosition() {
return startRun(() -> {
pidController.reset();
},
() -> {
/*
if (!pidController.atSetpoint()) {
pivotMotor.setVoltage(
pidController.calculate(
encoder.getPosition(),
setpoint.getAsDouble()
) - feedForward.calculate(-encoder.getPosition() + ManipulatorPivotConstants.kFFGravityOffset, 0)
);
} else {
pivotMotor.setVoltage(
-feedForward.calculate(-encoder.getPosition() + ManipulatorPivotConstants.kFFGravityOffset, 0)
);
}
*/
pivotMotor.setVoltage(
pidController.calculate(
encoder.getPosition(),
pidController.getSetpoint()
) - feedForward.calculate(-encoder.getPosition() + ManipulatorPivotConstants.kFFGravityOffset, 0)
);
});
}
/**
* Returns the encoder's position in radians
*
* @return Encoder's position in radians
*/
public double getEncoderPosition() {
return Units.radiansToDegrees( encoder.getPosition());
}
/**
* Returns the encoder's velocity in radians per second
*
* @return Encoder's velocity in radians per second
*/
public double getEncoderVelocity() {
return Units.radiansToDegrees(encoder.getVelocity());
}
public double getCGPosition(){
return Units.radiansToDegrees(-encoder.getPosition() + ManipulatorPivotConstants.kFFGravityOffset);
}
public double getPivotOutput(){
return pivotMotor.getAppliedOutput() * pivotMotor.getBusVoltage();
}
}

View File

@@ -0,0 +1,142 @@
package frc.robot.subsystems;
import java.util.function.DoubleSupplier;
import edu.wpi.first.math.geometry.Pose2d;
import edu.wpi.first.math.geometry.Rotation2d;
import edu.wpi.first.math.geometry.Transform2d;
import edu.wpi.first.math.geometry.Translation2d;
import edu.wpi.first.networktables.BooleanSubscriber;
import edu.wpi.first.networktables.DoubleSubscriber;
import edu.wpi.first.networktables.NetworkTable;
import edu.wpi.first.networktables.NetworkTableInstance;
import frc.robot.constants.VisionConstants;
public class Vision{
private DoubleSubscriber blackRobotRelativeX;
private DoubleSubscriber blackRobotRelativeY;
private DoubleSubscriber blackRobotRelativeZ;
private DoubleSubscriber blackClosestTag;
private BooleanSubscriber blackTagDetected;
private DoubleSubscriber blackFramerate;
private DoubleSubscriber orangeRobotRelativeX;
private DoubleSubscriber orangeRobotRelativeY;
private DoubleSubscriber orangeRobotRelativeZ;
private DoubleSubscriber orangeClosestTag;
private BooleanSubscriber orangeTagDetected;
private DoubleSubscriber orangeFramerate;
private DoubleSupplier gyroAngle;
public Vision(DoubleSupplier gyroAngle){
NetworkTableInstance inst = NetworkTableInstance.getDefault();
NetworkTable blackVisionTable = inst.getTable("black_Fiducial");
NetworkTable orangeVisionTable = inst.getTable("orange_Fiducial");
blackRobotRelativeX = blackVisionTable.getDoubleTopic("blackRelativeX").subscribe(0.0);
blackRobotRelativeY = blackVisionTable.getDoubleTopic("blackRelativeY").subscribe(0.0);
blackRobotRelativeZ = blackVisionTable.getDoubleTopic("blackRelativeZ").subscribe(0.0);
blackClosestTag = blackVisionTable.getDoubleTopic("blackClosestTag").subscribe(0.0);
blackTagDetected = blackVisionTable.getBooleanTopic("blackTagDetected").subscribe(false);
blackFramerate = blackVisionTable.getDoubleTopic("blackFPS").subscribe(0.0);
orangeRobotRelativeX = orangeVisionTable.getDoubleTopic("orangeRelativeX").subscribe(0.0);
orangeRobotRelativeY = orangeVisionTable.getDoubleTopic("orangeRelativeY").subscribe(0.0);
orangeRobotRelativeZ = orangeVisionTable.getDoubleTopic("orangeRelativeZ").subscribe(0.0);
orangeClosestTag = orangeVisionTable.getDoubleTopic("orangeClosestTag").subscribe(0.0);
orangeTagDetected = orangeVisionTable.getBooleanTopic("orangeTagDetected").subscribe(false);
orangeFramerate = orangeVisionTable.getDoubleTopic("orangeFPS").subscribe(0.0);
}
public Pose2d relativeToGlobalPose2d(int tagID, Translation2d relativeCoords){
Pose2d tag2dPose = new Pose2d(VisionConstants.globalTagCoords[tagID][0],
VisionConstants.globalTagCoords[tagID][1],
new Rotation2d());
Pose2d relative = new Pose2d(relativeCoords, new Rotation2d(gyroAngle.getAsDouble()));
Transform2d relative2dTransformation = new Transform2d(relative.getTranslation(), relative.getRotation());
Pose2d globalPose = tag2dPose.transformBy(relative2dTransformation.inverse());
return new Pose2d(globalPose.getTranslation(), new Rotation2d(gyroAngle.getAsDouble()));
}
public Pose2d getBlackGlobalPose(){
return relativeToGlobalPose2d(getBlackClosestTag(),
new Translation2d(getBlackRelativeX(), getBlackRelativeY()));
}
public double getBlackRelativeX(){
return blackRobotRelativeX.get();
}
public double getBlackRelativeY(){
return blackRobotRelativeY.get();
}
public double getBlackRelativeZ(){
return blackRobotRelativeZ.get();
}
public int getBlackClosestTag(){
return (int) blackClosestTag.get();
}
public double getBlackTimeStamp(){
return blackRobotRelativeX.getLastChange();
}
public boolean getBlackTagDetected(){
return blackTagDetected.get();
}
public double getBlackFPS(){
return blackFramerate.get();
}
public Pose2d getOrangeGlobalPose(){
return relativeToGlobalPose2d(getOrangeClosestTag(),
new Translation2d(getOrangeRelativeX(), getOrangeRelativeY()));
}
public double getOrangeRelativeX(){
return orangeRobotRelativeX.get();
}
public double getOrangeRelativeY(){
return orangeRobotRelativeY.get();
}
public double getOrangeRelativeZ(){
return orangeRobotRelativeZ.get();
}
public int getOrangeClosestTag(){
return (int) orangeClosestTag.get();
}
public double getOrangeTimeStamp(){
return orangeRobotRelativeX.getLastChange();
}
public boolean getOrangeTagDetected(){
return orangeTagDetected.get();
}
public double getOrangeFPS(){
return orangeFramerate.get();
}
}

View File

@@ -1,8 +1,8 @@
package frc.robot.subsystems.sysid;
import static edu.wpi.first.units.Units.Meters;
import static edu.wpi.first.units.Units.Inches;
import static edu.wpi.first.units.Units.Volts;
import static edu.wpi.first.units.Units.MetersPerSecond;
import static edu.wpi.first.units.Units.InchesPerSecond;
import edu.wpi.first.units.measure.MutDistance;
import edu.wpi.first.units.measure.MutLinearVelocity;
@@ -27,9 +27,9 @@ public class ElevatorSysID extends Elevator {
appliedVoltage = Volts.mutable(0);
elevatorPosition = Meters.mutable(0);
elevatorPosition = Inches.mutable(0);
elevatorVelocity = MetersPerSecond.mutable(0);
elevatorVelocity = InchesPerSecond.mutable(0);
routine = new SysIdRoutine(
ElevatorConstants.kSysIDConfig,
@@ -41,10 +41,10 @@ public class ElevatorSysID extends Elevator {
elevatorMotor1.get() * RobotController.getBatteryVoltage(), Volts
))
.linearPosition(elevatorPosition.mut_replace(
encoder.getPosition(), Meters
encoder.getPosition(), Inches
))
.linearVelocity(elevatorVelocity.mut_replace(
encoder.getVelocity(), MetersPerSecond
encoder.getVelocity(), InchesPerSecond
));
},
this
@@ -52,6 +52,11 @@ public class ElevatorSysID extends Elevator {
);
}
@Override
public void periodic() {
}
public Command sysIdQuasistatic(SysIdRoutine.Direction direction) {
return routine.quasistatic(direction);
}

View File

@@ -0,0 +1,62 @@
package frc.robot.subsystems.sysid;
import static edu.wpi.first.units.Units.Volts;
import static edu.wpi.first.units.Units.Radians;
import static edu.wpi.first.units.Units.RadiansPerSecond;
import edu.wpi.first.units.measure.MutAngle;
import edu.wpi.first.units.measure.MutAngularVelocity;
import edu.wpi.first.units.measure.MutVoltage;
import edu.wpi.first.wpilibj.RobotController;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine;
import frc.robot.constants.ManipulatorPivotConstants;
import frc.robot.subsystems.ManipulatorPivot;
public class ManipulatorPivotSysID extends ManipulatorPivot {
private MutVoltage appliedVoltage;
private MutAngle pivotPosition;
private MutAngularVelocity pivotVelocity;
private SysIdRoutine routine;
public ManipulatorPivotSysID() {
super();
appliedVoltage = Volts.mutable(0);
pivotPosition = Radians.mutable(0);
pivotVelocity = RadiansPerSecond.mutable(0);
routine = new SysIdRoutine(
ManipulatorPivotConstants.kSysIDConfig,
new SysIdRoutine.Mechanism(
pivotMotor::setVoltage,
(log) -> {
log.motor("armMotor")
.voltage(appliedVoltage.mut_replace(
pivotMotor.get() * RobotController.getBatteryVoltage(), Volts
))
.angularPosition(pivotPosition.mut_replace(
getEncoderPosition(), Radians
))
.angularVelocity(pivotVelocity.mut_replace(
getEncoderVelocity(), RadiansPerSecond
));
},
this
)
);
}
public Command sysIdQuasistatic(SysIdRoutine.Direction direction) {
return routine.quasistatic(direction);
}
public Command sysIdDynamic(SysIdRoutine.Direction direction) {
return routine.dynamic(direction);
}
}

View File

@@ -0,0 +1,35 @@
{
"fileName": "AdvantageKit.json",
"name": "AdvantageKit",
"version": "4.1.1",
"uuid": "d820cc26-74e3-11ec-90d6-0242ac120003",
"frcYear": "2025",
"mavenUrls": [
"https://frcmaven.wpi.edu/artifactory/littletonrobotics-mvn-release/"
],
"jsonUrl": "https://github.com/Mechanical-Advantage/AdvantageKit/releases/latest/download/AdvantageKit.json",
"javaDependencies": [
{
"groupId": "org.littletonrobotics.akit",
"artifactId": "akit-java",
"version": "4.1.1"
}
],
"jniDependencies": [
{
"groupId": "org.littletonrobotics.akit",
"artifactId": "akit-wpilibio",
"version": "4.1.1",
"skipInvalidPlatforms": false,
"isJar": false,
"validPlatforms": [
"linuxathena",
"linuxx86-64",
"linuxarm64",
"osxuniversal",
"windowsx86-64"
]
}
],
"cppDependencies": []
}