29 Commits

Author SHA1 Message Date
9497e216d7 beginning auto paths 2025-02-15 03:11:11 -05:00
9cc9b993eb global pose vision transformations 2025-02-15 02:48:28 -05:00
38dad2861d global apriltag coordinates 2025-02-15 01:48:58 -05:00
2275248f70 Random changes to try to make the robot work 2025-02-14 17:04:01 -05:00
187e7385c8 testing stuff day one 2025-02-11 19:10:01 -05:00
f0b7955faa working on dt offsets 2025-02-11 16:44:51 -05:00
aff9a4f2cb safe travels command and constants 2025-02-11 14:27:29 -05:00
619b3f4b7f manipulator pivot on controller pid 2025-02-11 09:15:19 -05:00
ed1ffe7044 manipulator and elevator constants 2025-02-11 00:55:28 -05:00
96ad0ba088 work on elevator manual, vision, and manipulator 2025-02-10 22:06:12 -05:00
56980d3772 removed velocity controllers on position mechanisms and added controller PID for elevator 2025-02-08 03:27:59 -05:00
6fa4377e52 removed algae beam break 2025-01-30 12:54:43 -05:00
89c1914d11 drivetrain odometry -> pose estimator 2025-01-30 04:14:57 -05:00
3af046f058 changing a bunch of constants and fixing stuff 2025-01-30 03:49:33 -05:00
34a547026d added vision class 2025-01-30 01:59:08 -05:00
0e91643b57 Merge branch 'kraken_swerve'
release the kraken
2025-01-27 21:38:03 -05:00
5fa4738b36 Added a few shuffle board things 2025-01-27 14:18:28 +00:00
ff3ecf6d1d Didnt commit everything for some reason 2025-01-26 19:31:38 +00:00
cef200a864 Renamed things for consistency, added a few methods 2025-01-26 19:28:49 +00:00
dff4d0e04f added spark configs to all subsystems, fixed a few formatting inconsistencies, added a TODO 2025-01-21 04:18:36 +00:00
9ab7ffad84 1,000 comments, reworked the climber pivot, removed indexer, added clamps on goToSetpoint methods 2025-01-21 03:56:00 +00:00
a96d96fecb Merge branch 'main' into kraken_swerve 2025-01-20 20:12:40 -05:00
edb95da65c Merge branch 'main' of https://git.coldlightalchemist.com/Team_2648/2025_Robot_Code 2025-01-20 20:02:53 -05:00
b90056f9ce Adding basic PathPlanner setup 2025-01-20 20:02:51 -05:00
ce7246114f Added lots of comments, also added a few simple methods as backup 2025-01-21 00:58:38 +00:00
198d105741 Adding AHRS from Studica to the drivetrain so the NavX is assumed to be used, also cleaned up some unused imports 2025-01-20 19:33:33 -05:00
8cbd9bb095 Kraken swerve based on Tyler's original work 2025-01-18 16:04:54 -05:00
4d9aa82520 Adding ArmSysID and some more configuration stuff 2025-01-18 15:00:53 -05:00
c1dddcace5 Resolving some issues related to the use of the CANcoder, and added some missing constants and instantiations for PIDControllers related to the Arm 2025-01-18 12:57:02 -05:00
33 changed files with 1586 additions and 469 deletions

View File

@@ -0,0 +1,13 @@
{
"NetworkTables Settings": {
"mode": "Client (NT4)"
},
"transitory": {
"Shuffleboard": {
"Sensors Tab": {
"open": true
},
"open": true
}
}
}

View File

@@ -0,0 +1,25 @@
{
"version": "2025.0",
"command": {
"type": "sequential",
"data": {
"commands": [
{
"type": "path",
"data": {
"pathName": "Start to 60 Right"
}
},
{
"type": "named",
"data": {
"name": "Shoot Coral L4"
}
}
]
}
},
"resetOdom": true,
"folder": null,
"choreoAuto": false
}

View File

@@ -0,0 +1,49 @@
{
"version": "2025.0",
"command": {
"type": "sequential",
"data": {
"commands": [
{
"type": "path",
"data": {
"pathName": "Start to 60 Right"
}
},
{
"type": "named",
"data": {
"name": "Shoot Coral L4"
}
},
{
"type": "path",
"data": {
"pathName": "60 Right to HP"
}
},
{
"type": "named",
"data": {
"name": "Collect Coral"
}
},
{
"type": "path",
"data": {
"pathName": "HP to 300 Left"
}
},
{
"type": "named",
"data": {
"name": "Shoot Coral L4"
}
}
]
}
},
"resetOdom": true,
"folder": null,
"choreoAuto": false
}

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,66 @@
{
"version": "2025.0",
"waypoints": [
{
"anchor": {
"x": 3.6061643835666786,
"y": 5.031720890416444
},
"prevControl": null,
"nextControl": {
"x": 3.065239726031196,
"y": 5.647773972598556
},
"isLocked": false,
"linkedName": null
},
{
"anchor": {
"x": 1.2510679859194649,
"y": 7.0812357195448
},
"prevControl": {
"x": 1.6678510274010594,
"y": 6.6394691780780075
},
"nextControl": null,
"isLocked": false,
"linkedName": null
}
],
"rotationTargets": [
{
"waypointRelativePos": 0.498997995991984,
"rotationDegrees": -52.46519085612145
}
],
"constraintZones": [],
"pointTowardsZones": [],
"eventMarkers": [
{
"name": "HP Pickup",
"waypointRelativePos": 0.16666666666666663,
"endWaypointRelativePos": null,
"command": null
}
],
"globalConstraints": {
"maxVelocity": 4.0,
"maxAcceleration": 4.0,
"maxAngularVelocity": 540.0,
"maxAngularAcceleration": 720.0,
"nominalVoltage": 12.0,
"unlimited": false
},
"goalEndState": {
"velocity": 0,
"rotation": -53.98486432191523
},
"reversed": false,
"folder": null,
"idealStartingState": {
"velocity": 0,
"rotation": -59.99999999999999
},
"useDefaultConstraints": true
}

View File

@@ -0,0 +1,61 @@
{
"version": "2025.0",
"waypoints": [
{
"anchor": {
"x": 4.988527397260274,
"y": 5.257106164383561
},
"prevControl": null,
"nextControl": {
"x": 5.649657534252619,
"y": 6.474186643842743
},
"isLocked": false,
"linkedName": null
},
{
"anchor": {
"x": 1.3072345890410957,
"y": 7.135316780821918
},
"prevControl": {
"x": 2.1636986301369863,
"y": 6.188698630136986
},
"nextControl": null,
"isLocked": false,
"linkedName": "HP Left Position"
}
],
"rotationTargets": [],
"constraintZones": [],
"pointTowardsZones": [],
"eventMarkers": [
{
"name": "HP Pickup",
"waypointRelativePos": 0.20476190476190542,
"endWaypointRelativePos": null,
"command": null
}
],
"globalConstraints": {
"maxVelocity": 4.0,
"maxAcceleration": 4.0,
"maxAngularVelocity": 540.0,
"maxAngularAcceleration": 720.0,
"nominalVoltage": 12.0,
"unlimited": false
},
"goalEndState": {
"velocity": 0,
"rotation": -53.97262661489646
},
"reversed": false,
"folder": null,
"idealStartingState": {
"velocity": 0,
"rotation": -120.06858282186238
},
"useDefaultConstraints": true
}

View File

@@ -0,0 +1,61 @@
{
"version": "2025.0",
"waypoints": [
{
"anchor": {
"x": 1.3072345890410957,
"y": 7.135316780821918
},
"prevControl": null,
"nextControl": {
"x": 2.5994434931506847,
"y": 6.909931506849315
},
"isLocked": false,
"linkedName": "HP Left Position"
},
{
"anchor": {
"x": 3.973766447368421,
"y": 5.246957236842105
},
"prevControl": {
"x": 3.6582270638067773,
"y": 5.772856209444845
},
"nextControl": null,
"isLocked": false,
"linkedName": null
}
],
"rotationTargets": [],
"constraintZones": [],
"pointTowardsZones": [],
"eventMarkers": [
{
"name": "Lift L4",
"waypointRelativePos": 0.5,
"endWaypointRelativePos": null,
"command": null
}
],
"globalConstraints": {
"maxVelocity": 4.0,
"maxAcceleration": 4.0,
"maxAngularVelocity": 540.0,
"maxAngularAcceleration": 720.0,
"nominalVoltage": 12.0,
"unlimited": false
},
"goalEndState": {
"velocity": 0,
"rotation": -59.69923999693802
},
"reversed": false,
"folder": null,
"idealStartingState": {
"velocity": 0,
"rotation": -53.97262661489646
},
"useDefaultConstraints": true
}

View File

@@ -0,0 +1,61 @@
{
"version": "2025.0",
"waypoints": [
{
"anchor": {
"x": 7.587970890410959,
"y": 6.143621575342466
},
"prevControl": null,
"nextControl": {
"x": 6.385916095890411,
"y": 6.158647260273973
},
"isLocked": false,
"linkedName": null
},
{
"anchor": {
"x": 4.988527397260274,
"y": 5.227054794520548
},
"prevControl": {
"x": 5.574529109589041,
"y": 6.098544520547945
},
"nextControl": null,
"isLocked": false,
"linkedName": null
}
],
"rotationTargets": [],
"constraintZones": [],
"pointTowardsZones": [],
"eventMarkers": [
{
"name": "Lift L4",
"waypointRelativePos": 0.4547619047619047,
"endWaypointRelativePos": null,
"command": null
}
],
"globalConstraints": {
"maxVelocity": 4.0,
"maxAcceleration": 4.0,
"maxAngularVelocity": 540.0,
"maxAngularAcceleration": 720.0,
"nominalVoltage": 12.0,
"unlimited": false
},
"goalEndState": {
"velocity": 0,
"rotation": -121.60750224624898
},
"reversed": false,
"folder": null,
"idealStartingState": {
"velocity": 0,
"rotation": -90.0
},
"useDefaultConstraints": true
}

View File

@@ -0,0 +1,32 @@
{
"robotWidth": 0.8763,
"robotLength": 0.8763,
"holonomicMode": true,
"pathFolders": [],
"autoFolders": [],
"defaultMaxVel": 4.0,
"defaultMaxAccel": 4.0,
"defaultMaxAngVel": 540.0,
"defaultMaxAngAccel": 720.0,
"defaultNominalVoltage": 12.0,
"robotMass": 48.35,
"robotMOI": 6.883,
"robotTrackwidth": 0.546,
"driveWheelRadius": 0.038,
"driveGearing": 4.29,
"maxDriveSpeed": 5.45,
"driveMotorType": "krakenX60",
"driveCurrentLimit": 65.0,
"wheelCOF": 1.1,
"flModuleX": 0.31115,
"flModuleY": 0.31115,
"frModuleX": 0.31115,
"frModuleY": -0.31115,
"blModuleX": -0.31115,
"blModuleY": 0.31115,
"brModuleX": -0.31115,
"brModuleY": -0.31115,
"bumperOffsetX": 0.0,
"bumperOffsetY": 0.0,
"robotFeatures": []
}

View File

@@ -4,27 +4,30 @@
package frc.robot; package frc.robot;
import frc.robot.constants.ArmConstants; import frc.robot.constants.ManipulatorPivotConstants;
import frc.robot.constants.ClimberPivotConstants;
import frc.robot.constants.ElevatorConstants; import frc.robot.constants.ElevatorConstants;
import frc.robot.constants.OIConstants; import frc.robot.constants.OIConstants;
import frc.robot.subsystems.Arm; import frc.robot.subsystems.ManipulatorPivot;
import frc.robot.subsystems.ClimberPivot; import frc.robot.subsystems.ClimberPivot;
import frc.robot.subsystems.ClimberRollers; import frc.robot.subsystems.ClimberRollers;
import frc.robot.subsystems.Drivetrain; import frc.robot.subsystems.Drivetrain;
import frc.robot.subsystems.Elevator; import frc.robot.subsystems.Elevator;
import frc.robot.subsystems.Indexer;
import frc.robot.subsystems.Manipulator; import frc.robot.subsystems.Manipulator;
import com.pathplanner.lib.auto.AutoBuilder;
import com.pathplanner.lib.auto.NamedCommands;
import edu.wpi.first.math.MathUtil;
import edu.wpi.first.wpilibj.shuffleboard.BuiltInWidgets; import edu.wpi.first.wpilibj.shuffleboard.BuiltInWidgets;
import edu.wpi.first.wpilibj.shuffleboard.Shuffleboard; import edu.wpi.first.wpilibj.shuffleboard.Shuffleboard;
import edu.wpi.first.wpilibj.shuffleboard.ShuffleboardTab; import edu.wpi.first.wpilibj.shuffleboard.ShuffleboardTab;
import edu.wpi.first.wpilibj.smartdashboard.SendableChooser;
import edu.wpi.first.wpilibj2.command.Command; import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.Commands; import edu.wpi.first.wpilibj2.command.Commands;
import edu.wpi.first.wpilibj2.command.PrintCommand;
import edu.wpi.first.wpilibj2.command.button.CommandXboxController; import edu.wpi.first.wpilibj2.command.button.CommandXboxController;
public class RobotContainer { public class RobotContainer {
private Arm arm;
private ClimberPivot climberPivot; private ClimberPivot climberPivot;
private ClimberRollers climberRollers; private ClimberRollers climberRollers;
@@ -33,16 +36,16 @@ public class RobotContainer {
private Elevator elevator; private Elevator elevator;
private Indexer indexer;
private Manipulator manipulator; private Manipulator manipulator;
private ManipulatorPivot manipulatorPivot;
private CommandXboxController driver; private CommandXboxController driver;
private CommandXboxController operator; private CommandXboxController operator;
public RobotContainer() { private SendableChooser<Command> autoChooser;
arm = new Arm();
public RobotContainer() {
climberPivot = new ClimberPivot(); climberPivot = new ClimberPivot();
climberRollers = new ClimberRollers(); climberRollers = new ClimberRollers();
@@ -51,25 +54,26 @@ public class RobotContainer {
elevator = new Elevator(); elevator = new Elevator();
indexer = new Indexer();
manipulator = new Manipulator(); manipulator = new Manipulator();
manipulatorPivot = new ManipulatorPivot();
driver = new CommandXboxController(OIConstants.kDriverControllerPort); driver = new CommandXboxController(OIConstants.kDriverControllerPort);
operator = new CommandXboxController(OIConstants.kOperatorControllerPort); operator = new CommandXboxController(OIConstants.kOperatorControllerPort);
autoChooser = AutoBuilder.buildAutoChooser();
configureButtonBindings(); configureButtonBindings();
configureNamedCommands();
configureShuffleboard(); configureShuffleboard();
} }
private void configureButtonBindings() { private void configureButtonBindings() {
arm.setDefaultCommand( //Default commands
arm.goToSetpoint(0, 1)
);
climberPivot.setDefaultCommand( climberPivot.setDefaultCommand(
climberPivot.goToAngle(0, 1) climberPivot.runPivot(0)
); );
climberRollers.setDefaultCommand( climberRollers.setDefaultCommand(
@@ -85,53 +89,81 @@ public class RobotContainer {
) )
); );
elevator.setDefaultCommand( //elevator.setDefaultCommand(
elevator.runElevator(operator::getLeftY) //elevator.runAssistedElevator(operator::getLeftY)
); // );
indexer.setDefaultCommand( //elevator.setDefaultCommand(moveManipulator(ElevatorConstants.kCoralIntakePosition, ManipulatorPivotConstants.kCoralIntakePosition));
indexer.runIndexer(0) elevator.setDefaultCommand(elevator.manualControl(() -> 0.0));
);
manipulatorPivot.setDefaultCommand(moveManipulator(ElevatorConstants.kCoralIntakePosition, ManipulatorPivotConstants.kCoralIntakePosition));
manipulator.setDefaultCommand( manipulator.setDefaultCommand(
manipulator.runManipulator(0) manipulator.defaultCommand()
); );
//manipulatorPivot.setDefaultCommand(
// manipulatorPivot.runAssistedPivot(operator::getRightY)
//);
//Driver inputs //Driver inputs
driver.start().whileTrue( driver.start().whileTrue(
drivetrain.setXCommand() drivetrain.setXCommand()
); );
driver.rightTrigger().whileTrue( driver.rightTrigger().whileTrue(
manipulator.runManipulator(1) manipulator.runManipulator(() -> 1, true)
); );
driver.leftTrigger().whileTrue(
manipulator.runUntilCollected(() -> 0.75)
);
driver.start().and(driver.back()).onTrue(
startingConfig()
);
driver.povDown().whileTrue(climberPivot.runPivot(-0.5));
driver.povUp().whileTrue(climberPivot.runPivot(0.5));
driver.povLeft().whileTrue(climberRollers.runRoller(0.5));
driver.povRight().whileTrue(climberRollers.runRoller(-0.5));
operator.povUp().whileTrue(
elevator.goToSetpoint(20)
);
//operator.a().whileTrue(elevator.manualControl(() -> 0.5));
//operator.b().whileTrue(elevator.manualControl(() ->-0.1));
/*
//Operator inputs //Operator inputs
operator.povUp().onTrue( operator.povUp().onTrue(
moveManipulator( moveManipulator(
ElevatorConstants.kElevatorL4Position, ElevatorConstants.kL4Position,
ArmConstants.kArmL4Position ManipulatorPivotConstants.kL4Position
) )
); );
operator.povRight().onTrue( operator.povRight().onTrue(
moveManipulator( moveManipulator(
ElevatorConstants.kElevatorL3Position, ElevatorConstants.kL3Position,
ArmConstants.kArmL3Position ManipulatorPivotConstants.kL3Position
) )
); );
operator.povLeft().onTrue( operator.povLeft().onTrue(
moveManipulator( moveManipulator(
ElevatorConstants.kElevatorL2Position, ElevatorConstants.kL2Position,
ArmConstants.kArmL2Position ManipulatorPivotConstants.kL2Position
) )
); );
operator.povDown().onTrue( operator.povDown().onTrue(
moveManipulator( moveManipulator(
ElevatorConstants.kElevatorL1Position, ElevatorConstants.kL1Position,
ArmConstants.kArmL1Position ManipulatorPivotConstants.kL1Position
) )
); );
@@ -146,80 +178,184 @@ public class RobotContainer {
operator.b().onTrue( operator.b().onTrue(
algaeIntakeRoutine(false) algaeIntakeRoutine(false)
); );
*/
}
private void configureNamedCommands() {
NamedCommands.registerCommand("Drivetrain Set X", drivetrain.setXCommand());
} }
//creates tabs and transforms them on the shuffleboard //creates tabs and transforms them on the shuffleboard
private void configureShuffleboard() { private void configureShuffleboard() {
ShuffleboardTab autoTab = Shuffleboard.getTab(OIConstants.kAutoTab);
ShuffleboardTab sensorTab = Shuffleboard.getTab(OIConstants.kSensorsTab); ShuffleboardTab sensorTab = Shuffleboard.getTab(OIConstants.kSensorsTab);
Shuffleboard.selectTab(OIConstants.kAutoTab);
autoTab.add("Auto Selection", autoChooser)
.withSize(2, 1)
.withPosition(0, 0)
.withWidget(BuiltInWidgets.kComboBoxChooser);
sensorTab.addDouble("Elevator Position", elevator::getEncoderPosition) sensorTab.addDouble("Elevator Position", elevator::getEncoderPosition)
.withSize(2, 1) .withSize(2, 1)
.withPosition(0, 0) .withPosition(0, 1)
.withWidget(BuiltInWidgets.kTextView); .withWidget(BuiltInWidgets.kTextView);
sensorTab.addDouble("ArmPosition", arm::getEncoderPosition) sensorTab.addDouble("Manipulator Position", manipulatorPivot::getEncoderPosition)
.withSize(2, 1)
.withPosition(2, 1)
.withWidget(BuiltInWidgets.kTextView);
sensorTab.addDouble("Climber Pivot Position", climberPivot::getEncoderPosition)
.withSize(2, 1) .withSize(2, 1)
.withPosition(2, 0) .withPosition(2, 0)
.withWidget(BuiltInWidgets.kTextView); .withWidget(BuiltInWidgets.kTextView);
sensorTab.addBoolean("Coral Sensor", manipulator::getCoralBeamBreak)
.withSize(1, 1)
.withPosition(4, 1)
.withWidget(BuiltInWidgets.kBooleanBox);
sensorTab.addDouble("gyro angle", drivetrain::getGyroValue);
sensorTab.addBoolean("bottom limit switch", elevator::getBottomLimitSwitch);
sensorTab.addDouble("elevator position", elevator::getEncoderPosition);
/*
sensorTab.addBoolean("Algae Sensor", manipulator::getAlgaePhotoSwitch)
.withSize(1, 1)
.withPosition(4, 0)
.withWidget(BuiltInWidgets.kBooleanBox);
*/
} }
public Command getAutonomousCommand() { public Command getAutonomousCommand() {
return new PrintCommand("NO AUTO DEFINED"); return autoChooser.getSelected();
} }
//teleop routines /**
* Moves the elevator and arm to the coral intake position, then runs the manipulator until collected
* @return Moves the elevator and arm, then intakes coral
*/
private Command coralIntakeRoutine() { private Command coralIntakeRoutine() {
return moveManipulator( return moveManipulator(
ElevatorConstants.kElevatorCoralIntakePosition, ElevatorConstants.kCoralIntakePosition,
ArmConstants.kArmCoralIntakePosition ManipulatorPivotConstants.kCoralIntakePosition
) )
.andThen(manipulator.runUntilCollected(1, true)); .andThen(manipulator.runUntilCollected(() -> 1));
} }
/**
* Moves the elevator and arm to the constant setpoints and runs the manipulator until collected
*
* @param l2 Is the algae on L2? (True = L2, False = L3)
* @return Moves the elevator and arm then intakes algae
*/
private Command algaeIntakeRoutine(boolean l2) { private Command algaeIntakeRoutine(boolean l2) {
return moveManipulator( return moveManipulator(
l2 ? ElevatorConstants.kElevatorL2AlgaePosition : ElevatorConstants.kElevatorL3AlgaePosition, l2 ? ElevatorConstants.kL2AlgaePosition : ElevatorConstants.kL3AlgaePosition,
l2 ? ArmConstants.kArmL2AlgaePosition : ArmConstants.kArmL3AlgaePosition l2 ? ManipulatorPivotConstants.kL2AlgaePosition : ManipulatorPivotConstants.kL3AlgaePosition
) )
.andThen(manipulator.runUntilCollected(1, false)); .andThen(manipulator.runUntilCollected(() -> 1));
} }
/**
* Moves the elevator and arm in different order based on target positions
*
* @param elevatorPosition The target position of the elevator
* @param armPosition The target rotation of the arm
* @return Moves the elevator and arm to the setpoints using the most efficient path
*/
private Command moveManipulator(double elevatorPosition, double armPosition) { private Command moveManipulator(double elevatorPosition, double armPosition) {
// If the elevator current and target positions are above the brace, or the arm current and target position is in // If the elevator current and target positions are above the brace, or the arm current and target position is in
// front of the brace, move together // front of the brace, move together
if ((elevator.isMotionSafe() && elevator.isMotionSafe(elevatorPosition)) || (arm.isMotionSafe() && arm.isMotionSafe(armPosition))) { if ((elevator.isMotionSafe() && elevator.isMotionSafe(elevatorPosition)) || (manipulatorPivot.isMotionSafe() && manipulatorPivot.isMotionSafe(armPosition))) {
return moveManipulatorUtil(elevatorPosition, armPosition, false, false); return moveManipulatorUtil(elevatorPosition, armPosition, false, false);
// If the target position is behind the brace, and the arm is not behind the brace, move the arm to a safe position first, // If the target position is behind the brace, and the arm is not behind the brace, move the arm to a safe position first,
// then the elevator, then the arm again // then the elevator, then the arm again
} else if (!arm.isMotionSafe(armPosition) && !arm.isMotionSafe()) { } else if (!manipulatorPivot.isMotionSafe(armPosition) && !manipulatorPivot.isMotionSafe()) {
return moveManipulatorUtil(elevatorPosition, ArmConstants.kArmSafeStowPosition, false, true) return moveManipulatorUtil(elevatorPosition, ManipulatorPivotConstants.kArmSafeStowPosition, false, true)
.andThen(arm.goToSetpoint(armPosition, 2)); .andThen(manipulatorPivot.goToSetpoint(armPosition));
// If the target position is behind the brace, and the arm is behind the brace, move the elevator first, then the arm // If the target position is behind the brace, and the arm is behind the brace, move the elevator first, then the arm
} else if (!arm.isMotionSafe(armPosition) && arm.isMotionSafe()) { } else if (!manipulatorPivot.isMotionSafe(armPosition) && manipulatorPivot.isMotionSafe()) {
return moveManipulatorUtil(elevatorPosition, armPosition, true, true); return moveManipulatorUtil(elevatorPosition, armPosition, true, true);
// If the arm is behind the brace, move the arm first, then the elevator // If the arm is behind the brace, move the arm first, then the elevator
} else if (!arm.isMotionSafe()) { } else if (!manipulatorPivot.isMotionSafe()) {
return moveManipulatorUtil(elevatorPosition, armPosition, false, true); return moveManipulatorUtil(elevatorPosition, armPosition, false, true);
// Catch all command that's safe regardless of arm and elevator positions // Catch all command that's safe regardless of arm and elevator positions
} else { } else {
return moveManipulatorUtil(elevatorPosition, ArmConstants.kArmSafeStowPosition, false, true) return moveManipulatorUtil(elevatorPosition, ManipulatorPivotConstants.kArmSafeStowPosition, false, true)
.andThen(arm.goToSetpoint(armPosition, 2)); .andThen(manipulatorPivot.goToSetpoint(armPosition));
} }
} }
/**
* Moves the elevator and arm in customizeable ways
*
* @param elevatorPosition The target elevator position
* @param armPosition The target arm position
* @param elevatorFirst Does the elevator move first? (True = Elevator first, False = Arm first)
* @param sequential Does the elevator and arm move separately? (True = .andThen, False = .alongWith)
* @return Moves the elevator and arm to the setpoints
*/
private Command moveManipulatorUtil(double elevatorPosition, double armPosition, boolean elevatorFirst, boolean sequential) { private Command moveManipulatorUtil(double elevatorPosition, double armPosition, boolean elevatorFirst, boolean sequential) {
if (elevatorPosition <= ElevatorConstants.kBracePosition || elevatorPosition == 0) {
armPosition = MathUtil.clamp(
armPosition,
0,
ManipulatorPivotConstants.kRotationLimit
);
}
return Commands.either( return Commands.either(
Commands.either( Commands.either(
elevator.goToSetpoint(elevatorPosition, 2).andThen(arm.goToSetpoint(armPosition, 2)), elevator.goToSetpoint(elevatorPosition).andThen(manipulatorPivot.goToSetpoint(armPosition)),
elevator.goToSetpoint(elevatorPosition, 2).alongWith(arm.goToSetpoint(armPosition, 2)), elevator.goToSetpoint(elevatorPosition).alongWith(manipulatorPivot.goToSetpoint(armPosition)),
() -> sequential () -> sequential
), ),
Commands.either( Commands.either(
arm.goToSetpoint(armPosition, 2).andThen(elevator.goToSetpoint(elevatorPosition, 2)), manipulatorPivot.goToSetpoint(armPosition).andThen(elevator.goToSetpoint(elevatorPosition)),
arm.goToSetpoint(armPosition, 2).alongWith(elevator.goToSetpoint(elevatorPosition, 2)), manipulatorPivot.goToSetpoint(armPosition).alongWith(elevator.goToSetpoint(elevatorPosition)),
() -> sequential () -> sequential
), ),
() -> elevatorFirst () -> elevatorFirst
); );
} }
private Command manipulatorSafeTravel(double elevatorPosition, double armPosition, boolean isL4){
if(!isL4){
return Commands.sequence(
manipulatorPivot.goToSetpoint(ManipulatorPivotConstants.kArmSafeStowPosition),
elevator.goToSetpoint(elevatorPosition),
manipulatorPivot.goToSetpoint(armPosition));
}else{
return Commands.sequence(
manipulatorPivot.goToSetpoint(ManipulatorPivotConstants.kArmSafeStowPosition),
elevator.goToSetpoint(elevatorPosition).until(() -> elevator.getEncoderPosition() > ElevatorConstants.kL4TransitionPosition),
Commands.parallel( manipulatorPivot.goToSetpoint(armPosition)), elevator.goToSetpoint(elevatorPosition));
}
}
/**
* Moves the arm and elevator in a safe way.
*
* @param elevatorPosition The target position of the elevator
* @param armPosition The target rotation of the arm
* @return Moves the elevator and arm to the setpoints
*/
@SuppressWarnings("unused")
private Command safeMoveManipulator(double elevatorPosition, double armPosition) {
return moveManipulatorUtil(elevatorPosition, ManipulatorPivotConstants.kArmSafeStowPosition, false, true)
.andThen(manipulatorPivot.goToSetpoint(armPosition));
}
private Command startingConfig() {
return moveManipulatorUtil(0, 0, false, true)
.alongWith(climberPivot.climb(ClimberPivotConstants.kClimberStartingPosition, .1));
}
} }

View File

@@ -1,25 +0,0 @@
package frc.robot.constants;
import com.ctre.phoenix6.configs.CANcoderConfiguration;
public class ArmConstants {
public static final int kArmMotorID = 0;
public static final int kCANcoderID = 0;
public static final double kEncoderConversionFactor = 0;
public static final double kArmMaxVelocity = 0;
public static final double kArmCoralIntakePosition = 0;
public static final double kArmL1Position = 0;
public static final double kArmL2Position = 0;
public static final double kArmL3Position = 0;
public static final double kArmL4Position = 0;
public static final double kArmL2AlgaePosition = 0;
public static final double kArmL3AlgaePosition = 0;
public static final double kArmSafeStowPosition = 0;
public static final CANcoderConfiguration canCoderConfig = new CANcoderConfiguration();
}

View File

@@ -1,10 +1,18 @@
package frc.robot.constants; package frc.robot.constants;
import java.io.IOException;
import org.json.simple.parser.ParseException;
import com.pathplanner.lib.config.PIDConstants;
import com.pathplanner.lib.config.RobotConfig;
import com.pathplanner.lib.controllers.PPHolonomicDriveController;
import edu.wpi.first.math.trajectory.TrapezoidProfile; import edu.wpi.first.math.trajectory.TrapezoidProfile;
public class AutoConstants { public class AutoConstants {
public static final double kMaxSpeedMetersPerSecond = 3; public static final double kMaxSpeedMetersPerSecond = 4;
public static final double kMaxAccelerationMetersPerSecondSquared = 3; public static final double kMaxAccelerationMetersPerSecondSquared = 4;
public static final double kMaxAngularSpeedRadiansPerSecond = Math.PI; public static final double kMaxAngularSpeedRadiansPerSecond = Math.PI;
public static final double kMaxAngularSpeedRadiansPerSecondSquared = Math.PI; public static final double kMaxAngularSpeedRadiansPerSecondSquared = Math.PI;
@@ -15,4 +23,21 @@ public class AutoConstants {
// Constraint for the motion profiled robot angle controller // Constraint for the motion profiled robot angle controller
public static final TrapezoidProfile.Constraints kThetaControllerConstraints = new TrapezoidProfile.Constraints( public static final TrapezoidProfile.Constraints kThetaControllerConstraints = new TrapezoidProfile.Constraints(
kMaxAngularSpeedRadiansPerSecond, kMaxAngularSpeedRadiansPerSecondSquared); kMaxAngularSpeedRadiansPerSecond, kMaxAngularSpeedRadiansPerSecondSquared);
// TODO This is a constant being managed like a static rewriteable variable
public static RobotConfig kRobotConfig;
public static final PPHolonomicDriveController kPPDriveController = new PPHolonomicDriveController(
new PIDConstants(kPXController, 0, 0),
new PIDConstants(kPYController, 0, 0)
);
static {
try {
kRobotConfig = RobotConfig.fromGUISettings();
} catch (IOException | ParseException e) {
System.err.println("FAILED TO READ ROBOTCONFIG, WAS THE CONFIG SET UP IN PATHPLANNER?");
e.printStackTrace();
}
}
} }

View File

@@ -1,7 +1,9 @@
package frc.robot.constants; package frc.robot.constants;
import com.revrobotics.spark.config.SparkMaxConfig;
public class ClimberPivotConstants { public class ClimberPivotConstants {
public static final int kPivotMotorID = 0; public static final int kPivotMotorID = 10;
public static final int kClimberLimitSwitchID = 0; public static final int kClimberLimitSwitchID = 0;
@@ -10,4 +12,9 @@ public class ClimberPivotConstants {
public static final double kPIDControllerP = 0; public static final double kPIDControllerP = 0;
public static final double kPIDControllerI = 0; public static final double kPIDControllerI = 0;
public static final double kPIDControllerD = 0; public static final double kPIDControllerD = 0;
public static final double kClimberClimbPosition = 0;
public static final double kClimberStartingPosition = 0;
public static final SparkMaxConfig motorConfig = new SparkMaxConfig();
} }

View File

@@ -1,5 +1,9 @@
package frc.robot.constants; package frc.robot.constants;
import com.revrobotics.spark.config.SparkMaxConfig;
public class ClimberRollersConstants { public class ClimberRollersConstants {
public static final int kRollerMotorID = 0; public static final int kRollerMotorID = 9;
public static final SparkMaxConfig motorConfig = new SparkMaxConfig();
} }

View File

@@ -17,15 +17,15 @@ public class DrivetrainConstants {
public static final double kMaxAngularSpeed = 2 * Math.PI; // radians per second public static final double kMaxAngularSpeed = 2 * Math.PI; // radians per second
// Chassis configuration // Chassis configuration
public static final double kTrackWidth = Units.inchesToMeters(26.5); public static final double kTrackWidth = Units.inchesToMeters(24.5);
// Distance between centers of right and left wheels on robot // Distance between centers of right and left wheels on robot
public static final double kWheelBase = Units.inchesToMeters(26.5); public static final double kWheelBase = Units.inchesToMeters(24.5);
// Angular offsets of the modules relative to the chassis in radians // Angular offsets of the modules relative to the chassis in radians
public static final double kFrontLeftChassisAngularOffset = -Math.PI / 2; public static final double kFrontLeftChassisAngularOffset = Math.PI;
public static final double kFrontRightChassisAngularOffset = 0; public static final double kFrontRightChassisAngularOffset = -Math.PI / 2;
public static final double kBackLeftChassisAngularOffset = Math.PI; public static final double kBackLeftChassisAngularOffset = Math.PI / 2;
public static final double kBackRightChassisAngularOffset = Math.PI / 2; public static final double kBackRightChassisAngularOffset = 0;
// 1, 7, 10 is the default for these three values // 1, 7, 10 is the default for these three values
public static final double kSysIDDrivingRampRate = 1; public static final double kSysIDDrivingRampRate = 1;
@@ -38,17 +38,17 @@ public class DrivetrainConstants {
public static final double kSysIDTurningTimeout = 10; public static final double kSysIDTurningTimeout = 10;
// SPARK MAX CAN IDs // SPARK MAX CAN IDs
public static final int kFrontLeftDrivingCanId = 11; public static final int kFrontLeftDrivingCanId = 0;
public static final int kRearLeftDrivingCanId = 13; public static final int kRearLeftDrivingCanId = 2;
public static final int kFrontRightDrivingCanId = 15; public static final int kFrontRightDrivingCanId = 1;
public static final int kRearRightDrivingCanId = 17; public static final int kRearRightDrivingCanId = 3;
public static final int kFrontLeftTurningCanId = 10; public static final int kFrontLeftTurningCanId = 2;
public static final int kRearLeftTurningCanId = 12; public static final int kRearLeftTurningCanId = 4;
public static final int kFrontRightTurningCanId = 14; public static final int kFrontRightTurningCanId = 7;
public static final int kRearRightTurningCanId = 16; public static final int kRearRightTurningCanId = 5;
public static final boolean kGyroReversed = false; public static final boolean kGyroReversed = true;
// YOU SHOULDN'T NEED TO CHANGE ANYTHING BELOW THIS LINE UNLESS YOU'RE ADDING A NEW CONFIGURATION ITEM // YOU SHOULDN'T NEED TO CHANGE ANYTHING BELOW THIS LINE UNLESS YOU'RE ADDING A NEW CONFIGURATION ITEM

View File

@@ -11,38 +11,47 @@ import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine;
import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine.Config; import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine.Config;
public class ElevatorConstants { public class ElevatorConstants {
public static final int kElevatorMotor1ID = 0; public static final int kElevatorMotor1ID = 8;
public static final int kElevatorMotor2ID = 0; public static final int kElevatorMotor2ID = 6;
public static final int kTopLimitSwitchID = 0;
public static final int kBottomLimitSwitchID = 0; public static final int kBottomLimitSwitchID = 0;
public static final double kEncoderConversionFactor = 0; // 60/11 gearing multiplied by circumference of sprocket multiplied by 2 for carriage position
public static final double kEncoderConversionFactor = 11.0/60.0 * (22.0*0.25) * 2.0;
public static final int kMotorAmpsMax = 0; public static final int kCurrentLimit = 40;
public static final double kPositionControllerP = 0; public static final double kPositionControllerP = 0.3;
public static final double kPositionControllerI = 0; public static final double kPositionControllerI = 0;
public static final double kPositionControllerD = 0; public static final double kPositionControllerD = 0;
public static final double kAllowedError = 0.5;
/*
public static final double kVelocityControllerP = 0; public static final double kVelocityControllerP = 0;
public static final double kVelocityControllerI = 0; public static final double kVelocityControllerI = 0;
public static final double kVelocityControllerD = 0; public static final double kVelocityControllerD = 0;
*/
public static final double kFeedForwardS = 0; public static final double kFeedForwardS = 0;
public static final double kFeedForwardG = 0; public static final double kFeedForwardG = 0.53; // calculated value
public static final double kFeedForwardV = 0; public static final double kFeedForwardV = 4.78; // calculated value
public static final double kElevatorMaxVelocity = 0; public static final double kMaxVelocity = 120.0; // 120 inches per second (COOKING) calculated max is 184 in/s
public static final double kMaxAcceleration = 500.0; // 400 inches per second^2 (also COOKING) calculated max is 600 in/s^2
public static final double kElevatorCoralIntakePosition = 0; public static final double kCoralIntakePosition = 0;
public static final double kElevatorL1Position = 0; public static final double kL1Position = 0;
public static final double kElevatorL2Position = 0; public static final double kL2Position = 14.5;
public static final double kElevatorL3Position = 0; public static final double kL3Position = 29.0;
public static final double kElevatorL4Position = 0; public static final double kL4Position = 53.0;
public static final double kElevatorL2AlgaePosition = 0; public static final double kL4TransitionPosition = 40.0;
public static final double kElevatorL3AlgaePosition = 0; public static final double kL2AlgaePosition = 22.0;
public static final double kElevatorBracePosition = 0; public static final double kL3AlgaePosition = 39.0;
public static final double kProcessorPosition = 4.0;
/**The position of the top of the elevator brace */
public static final double kBracePosition = 5.5;
public static final double kMaxHeight = 53.0;
// 1, 7, 10 are the defaults for these, change as necessary // 1, 7, 10 are the defaults for these, change as necessary
public static final double kSysIDRampRate = 1; public static final double kSysIDRampRate = 1;
@@ -63,10 +72,30 @@ public class ElevatorConstants {
static { static {
motorConfig motorConfig
.smartCurrentLimit(kMotorAmpsMax) .smartCurrentLimit(kCurrentLimit)
.idleMode(kIdleMode); .idleMode(kIdleMode)
.inverted(false);
motorConfig.encoder motorConfig.encoder
.positionConversionFactor(kEncoderConversionFactor) .positionConversionFactor(kEncoderConversionFactor);
.velocityConversionFactor(kEncoderConversionFactor / 60.0); motorConfig.closedLoop
.p(kPositionControllerP)
.i(kPositionControllerI)
.d(kPositionControllerD)
.velocityFF(0.0); // keep at zero for position pid
motorConfig.closedLoop.maxMotion
.maxAcceleration(kMaxAcceleration)
.maxVelocity(kMaxVelocity)
.allowedClosedLoopError(kAllowedError);
}
public static final SparkMaxConfig motorConfig2 = new SparkMaxConfig();
static {
motorConfig2
.smartCurrentLimit(kCurrentLimit)
.idleMode(kIdleMode)
.inverted(false);
motorConfig.encoder
.positionConversionFactor(kEncoderConversionFactor);
} }
} }

View File

@@ -1,6 +0,0 @@
package frc.robot.constants;
public class IndexerConstants {
public static final int kIndexerMotorID = 0;
public static final int kIndexerBeamBreakID = 0;
}

View File

@@ -1,7 +1,10 @@
package frc.robot.constants; package frc.robot.constants;
import com.revrobotics.spark.config.SparkMaxConfig;
public class ManipulatorConstants { public class ManipulatorConstants {
public static final int kManipulatorMotorID = 0; public static final int kManipulatorMotorID = 12;
public static final int kCoralBeamBreakID = 0; public static final int kCoralBeamBreakID = 2;
public static final int kAlgaeBeamBreakID = 0;
public static final SparkMaxConfig motorConfig = new SparkMaxConfig();
} }

View File

@@ -0,0 +1,87 @@
package frc.robot.constants;
import static edu.wpi.first.units.Units.Volts;
import static edu.wpi.first.units.Units.Second;
import static edu.wpi.first.units.Units.Seconds;
import com.ctre.phoenix6.signals.SensorDirectionValue;
import com.revrobotics.spark.config.SparkMaxConfig;
import com.revrobotics.spark.config.SparkBaseConfig.IdleMode;
import edu.wpi.first.math.util.Units;
import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine;
import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine.Config;
public class ManipulatorPivotConstants {
public static final int kArmMotorID = 1;
public static final int kMotorCurrentMax = 40;
public static final double kPivotConversion = 12.0/60.0 * 20.0/60.0 * 12.0/28.0;
public static final double kPivotMaxVelocity = 0;
public static final double kPositionalP = 0;
public static final double kPositionalI = 0;
public static final double kPositionalD = 0;
public static final double kPositionalTolerance = Units.degreesToRadians(3.0);
public static final double kFeedForwardS = 0;
public static final double kFeedForwardG = 0.41; // calculated value
public static final double kFeedForwardV = 0.68; //calculated value
public static final double kFFGravityOffset = Units.degreesToRadians(-135.0);
public static final double kMaxAcceleration = Units.degreesToRadians(1000.0); // degrees per second^2 calculated max = 2100
public static final double kMaxVelocity = Units.degreesToRadians(100.0); // degrees per second calculated max = 168
public static final double kCoralIntakePosition = Units.degreesToRadians(175.0);
public static final double kL1Position = Units.degreesToRadians(0.0);
public static final double kL2Position = Units.degreesToRadians(25.0);
public static final double kL3Position = Units.degreesToRadians(60.0);
public static final double kL4Position = Units.degreesToRadians(45.0);
public static final double kL2AlgaePosition = Units.degreesToRadians(175.0);
public static final double kL3AlgaePosition = Units.degreesToRadians(175.0);
public static final double kProcesserPosition = Units.degreesToRadians(175.0);
/**The closest position to the elevator brace without hitting it */
public static final double kArmSafeStowPosition = Units.degreesToRadians(60.0);
/**The forward rotation limit of the arm */
public static final double kRotationLimit = Units.degreesToRadians(175.0);
public static final double kSysIDRampRate = 1;
public static final double kSysIDStepVolts = 7;
public static final double kSysIDTimeout = 10;
public static final SensorDirectionValue kSensorDirection = SensorDirectionValue.CounterClockwise_Positive;
public static final IdleMode kIdleMode = IdleMode.kBrake;
// YOU SHOULDN'T NEED TO CHANGE ANYTHING BELOW THIS LINE UNLESS YOU'RE ADDING A NEW CONFIG
public static final SysIdRoutine.Config kSysIDConfig = new Config(
Volts.of(kSysIDRampRate).per(Second),
Volts.of(kSysIDStepVolts),
Seconds.of(kSysIDTimeout)
);
public static final SparkMaxConfig motorConfig = new SparkMaxConfig();
static {
motorConfig
.smartCurrentLimit(kMotorCurrentMax)
.idleMode(kIdleMode);
motorConfig.absoluteEncoder.positionConversionFactor(kPivotConversion);
motorConfig.closedLoop
.p(kPositionalP)
.i(kPositionalI)
.d(kPositionalD)
.velocityFF(0.0); // keep at zero for position pid
motorConfig.closedLoop.maxMotion
.maxAcceleration(kMaxAcceleration)
.maxVelocity(kMaxVelocity)
.allowedClosedLoopError(kPositionalTolerance);
}
}

View File

@@ -2,6 +2,12 @@ package frc.robot.constants;
import com.revrobotics.spark.config.ClosedLoopConfig.FeedbackSensor; import com.revrobotics.spark.config.ClosedLoopConfig.FeedbackSensor;
import com.revrobotics.spark.config.SparkBaseConfig.IdleMode; import com.revrobotics.spark.config.SparkBaseConfig.IdleMode;
import com.ctre.phoenix6.configs.CurrentLimitsConfigs;
import com.ctre.phoenix6.configs.FeedbackConfigs;
import com.ctre.phoenix6.configs.MotorOutputConfigs;
import com.ctre.phoenix6.configs.Slot0Configs;
import com.ctre.phoenix6.signals.InvertedValue;
import com.ctre.phoenix6.signals.NeutralModeValue;
import com.revrobotics.spark.config.SparkMaxConfig; import com.revrobotics.spark.config.SparkMaxConfig;
public class ModuleConstants { public class ModuleConstants {
@@ -20,52 +26,76 @@ public class ModuleConstants {
public static final double kDriveWheelFreeSpeedRps = (kDrivingMotorFreeSpeedRps * kWheelCircumferenceMeters) public static final double kDriveWheelFreeSpeedRps = (kDrivingMotorFreeSpeedRps * kWheelCircumferenceMeters)
/ kDrivingMotorReduction; / kDrivingMotorReduction;
public static final int kDriveMotorCurrentLimit = 40; public static final double kDrivingFactor = kWheelDiameterMeters * Math.PI / kDrivingMotorReduction;
public static final double kTurningFactor = 2 * Math.PI;
public static final double kDrivingVelocityFeedForward = 1 / kDriveWheelFreeSpeedRps;
public static final double kDriveP = .04;
public static final double kDriveI = 0;
public static final double kDriveD = 0;
public static final double kDriveS = 0;
public static final double kDriveV = kDrivingVelocityFeedForward;
public static final double kDriveA = 0;
public static final double kTurnP = 1;
public static final double kTurnI = 0;
public static final double kTurnD = 0;
public static final int kDriveMotorStatorCurrentLimit = 100;
public static final int kDriveMotorSupplyCurrentLimit = 65;
public static final int kTurnMotorCurrentLimit = 20; public static final int kTurnMotorCurrentLimit = 20;
public static final IdleMode kTurnIdleMode = IdleMode.kBrake;
public static final InvertedValue kDriveInversionState = InvertedValue.Clockwise_Positive;
public static final NeutralModeValue kDriveIdleMode = NeutralModeValue.Brake;
// YOU SHOULDN'T NEED TO CHANGE ANYTHING BELOW THIS LINE UNLESS YOU'RE ADDING A NEW CONFIGURATION ITEM // YOU SHOULDN'T NEED TO CHANGE ANYTHING BELOW THIS LINE UNLESS YOU'RE ADDING A NEW CONFIGURATION ITEM
public static final SparkMaxConfig drivingConfig = new SparkMaxConfig();
public static final SparkMaxConfig turningConfig = new SparkMaxConfig(); public static final SparkMaxConfig turningConfig = new SparkMaxConfig();
static { public static final FeedbackConfigs kDriveFeedConfig = new FeedbackConfigs();
// Use module constants to calculate conversion factors and feed forward gain. public static final CurrentLimitsConfigs kDriveCurrentLimitConfig = new CurrentLimitsConfigs();
double drivingFactor = kWheelDiameterMeters * Math.PI / kDrivingMotorReduction; public static final MotorOutputConfigs kDriveMotorConfig = new MotorOutputConfigs();
double turningFactor = 2 * Math.PI; public static final Slot0Configs kDriveSlot0Config = new Slot0Configs();
double drivingVelocityFeedForward = 1 / kDriveWheelFreeSpeedRps;
drivingConfig static {
.idleMode(IdleMode.kBrake) kDriveFeedConfig.SensorToMechanismRatio = kDrivingMotorReduction;
.smartCurrentLimit(kDriveMotorCurrentLimit);
drivingConfig.encoder kDriveCurrentLimitConfig.StatorCurrentLimitEnable = true;
.positionConversionFactor(drivingFactor) // meters kDriveCurrentLimitConfig.SupplyCurrentLimitEnable = true;
.velocityConversionFactor(drivingFactor / 60.0); // meters per second kDriveCurrentLimitConfig.StatorCurrentLimit = kDriveMotorStatorCurrentLimit;
drivingConfig.closedLoop kDriveCurrentLimitConfig.SupplyCurrentLimit = kDriveMotorSupplyCurrentLimit;
.feedbackSensor(FeedbackSensor.kPrimaryEncoder)
// These are example gains you may need to them for your own robot! kDriveMotorConfig.Inverted = kDriveInversionState;
.pid(0.04, 0, 0) kDriveMotorConfig.NeutralMode = kDriveIdleMode;
.velocityFF(drivingVelocityFeedForward)
.outputRange(-1, 1); kDriveSlot0Config.kP = kDriveP;
kDriveSlot0Config.kI = kDriveI;
kDriveSlot0Config.kD = kDriveD;
kDriveSlot0Config.kS = kDriveS;
kDriveSlot0Config.kV = kDriveV;
kDriveSlot0Config.kA = kDriveA;
turningConfig turningConfig
.idleMode(IdleMode.kBrake) .idleMode(kTurnIdleMode)
.smartCurrentLimit(20); .smartCurrentLimit(kTurnMotorCurrentLimit);
turningConfig.absoluteEncoder turningConfig.absoluteEncoder
// Invert the turning encoder, since the output shaft rotates in the opposite // Invert the turning encoder, since the output shaft rotates in the opposite
// direction of the steering motor in the MAXSwerve Module. // direction of the steering motor in the MAXSwerve Module.
.inverted(true) .inverted(true)
.positionConversionFactor(turningFactor) // radians .positionConversionFactor(kTurningFactor) // radians
.velocityConversionFactor(turningFactor / 60.0); // radians per second .velocityConversionFactor(kTurningFactor / 60.0); // radians per second
turningConfig.closedLoop turningConfig.closedLoop
.feedbackSensor(FeedbackSensor.kAbsoluteEncoder) .feedbackSensor(FeedbackSensor.kAbsoluteEncoder)
// These are example gains you may need to them for your own robot! // These are example gains you may need to them for your own robot!
.pid(1, 0, 0) .pid(kTurnP, kTurnI, kTurnD)
.outputRange(-1, 1) .outputRange(-1, 1)
// Enable PID wrap around for the turning motor. This will allow the PID // Enable PID wrap around for the turning motor. This will allow the PID
// controller to go through 0 to get to the setpoint i.e. going from 350 degrees // controller to go through 0 to get to the setpoint i.e. going from 350 degrees
// to 10 degrees will go through 0 rather than the other direction which is a // to 10 degrees will go through 0 rather than the other direction which is a
// longer route. // longer route.
.positionWrappingEnabled(true) .positionWrappingEnabled(true)
.positionWrappingInputRange(0, turningFactor); .positionWrappingInputRange(0, kTurningFactor);
} }
} }

View File

@@ -6,5 +6,6 @@ public class OIConstants {
public static final double kDriveDeadband = 0.05; public static final double kDriveDeadband = 0.05;
public static final String kAutoTab = "Auto Tab";
public static final String kSensorsTab = "Sensors Tab"; public static final String kSensorsTab = "Sensors Tab";
} }

View File

@@ -0,0 +1,31 @@
package frc.robot.constants;
public class VisionConstants {
// global coordinate map of all tags. index is the tag id.
// Units: inches and degrees. {x, y, z, z-rotation, y-rotation}
// This is for ANDYMARK FIELDS found in NE. Not for WELDED FIELDS.
public static final double[][] globalTagCoords = {{},
{656.98, 24.73, 58.50, 126.0, 0},
{656.98, 291.90, 58.50, 234.0, 0},
{452.4, 316.21, 51.25, 270, 0},
{365.2, 241.44, 73.54, 0, 30},
{365.2, 75.19, 73.54, 0, 30},
{530.49, 129.97, 12.13, 300, 0},
{546.87, 158.3, 12.13, 0, 0},
{530.49, 186.63, 12.13, 60, 0},
{497.77, 186.63, 12.13, 120, 0},
{481.39, 158.3, 12.13, 180, 0},
{497.77, 129.97, 12.13, 240, 0},
{33.9, 24.73, 58.5, 54, 0},
{33.9, 291.9, 58.5, 306, 0},
{325.68, 241.44, 73.54, 180, 30},
{325.68, 75.19, 73.54, 180, 30},
{238.49, 0.42, 51.25, 90, 0},
{160.39, 129.97, 12.13, 240, 0},
{144.00, 158.3, 12.13, 180, 0},
{160.39, 186.63, 12.13, 120, 0},
{193.1, 186.63, 12.13, 60, 0},
{209.49, 158.3, 12.13, 0, 0},
{193.1, 129.97, 12.13, 300, 0},
};
}

View File

@@ -1,94 +0,0 @@
package frc.robot.subsystems;
import java.util.function.DoubleSupplier;
import com.ctre.phoenix6.hardware.CANcoder;
import com.revrobotics.spark.SparkMax;
import com.revrobotics.spark.SparkLowLevel.MotorType;
import edu.wpi.first.math.controller.ArmFeedforward;
import edu.wpi.first.math.controller.PIDController;
import edu.wpi.first.math.util.Units;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.SubsystemBase;
import frc.robot.constants.ArmConstants;
public class Arm extends SubsystemBase {
private SparkMax armMotor;
private CANcoder canCoder;
private PIDController positionController;
private PIDController velocityController;
private ArmFeedforward feedForward;
public Arm() {
armMotor = new SparkMax(
ArmConstants.kArmMotorID,
MotorType.kBrushless
);
canCoder = new CANcoder(ArmConstants.kCANcoderID);
}
/**
* Returns whether or not the motion is safe relative to the encoder's current position
* and the arm safe stow position
*
* @return Is the motion safe
*/
public boolean isMotionSafe() {
return isMotionSafe(getEncoderPosition());
}
/**
* Returns whether or not the motion is safe relative to some target position and the
* arm safe stow position
*
* @param motionTarget The target position to determine the safety of
* @return Is the motion safe
*/
public boolean isMotionSafe(double motionTarget) {
return motionTarget > ArmConstants.kArmSafeStowPosition;
}
//manual command that keeps ouput speed consistent no matter the direction
public Command runArm(DoubleSupplier speed) {
return run(() -> {
double realSpeedTarget = speed.getAsDouble() * ArmConstants.kArmMaxVelocity;
double voltsOut = velocityController.calculate(
getEncoderVelocity(),
realSpeedTarget
) + feedForward.calculate(
getEncoderPosition(),
getEncoderVelocity()
);
armMotor.setVoltage(voltsOut);
});
}
public Command goToSetpoint(double setpoint, double timeout) {
return run(() -> {
double voltsOut = positionController.calculate(
getEncoderPosition(),
setpoint
) + feedForward.calculate(
getEncoderPosition(),
getEncoderVelocity()
);
armMotor.setVoltage(voltsOut);
}).until(positionController::atSetpoint).withTimeout(timeout);
}
public double getEncoderPosition() {
return Units.rotationsToRadians(canCoder.getPosition().getValueAsDouble());
}
public double getEncoderVelocity() {
return Units.rotationsToRadians(canCoder.getVelocity().getValueAsDouble());
}
}

View File

@@ -2,10 +2,10 @@ package frc.robot.subsystems;
import com.revrobotics.RelativeEncoder; import com.revrobotics.RelativeEncoder;
import com.revrobotics.spark.SparkMax; import com.revrobotics.spark.SparkMax;
import com.revrobotics.spark.SparkBase.PersistMode;
import com.revrobotics.spark.SparkBase.ResetMode;
import com.revrobotics.spark.SparkLowLevel.MotorType; import com.revrobotics.spark.SparkLowLevel.MotorType;
import edu.wpi.first.math.controller.PIDController;
import edu.wpi.first.wpilibj.DigitalInput;
import edu.wpi.first.wpilibj2.command.Command; import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.SubsystemBase; import edu.wpi.first.wpilibj2.command.SubsystemBase;
import frc.robot.constants.ClimberPivotConstants; import frc.robot.constants.ClimberPivotConstants;
@@ -15,9 +15,7 @@ public class ClimberPivot extends SubsystemBase {
private RelativeEncoder neoEncoder; private RelativeEncoder neoEncoder;
private DigitalInput cageLimitSwitch; //private DigitalInput cageLimitSwitch;
private PIDController pidController;
public ClimberPivot() { public ClimberPivot() {
pivotMotor = new SparkMax( pivotMotor = new SparkMax(
@@ -25,15 +23,15 @@ public class ClimberPivot extends SubsystemBase {
MotorType.kBrushless MotorType.kBrushless
); );
pivotMotor.configure(
ClimberPivotConstants.motorConfig,
ResetMode.kResetSafeParameters,
PersistMode.kPersistParameters
);
neoEncoder = pivotMotor.getEncoder(); neoEncoder = pivotMotor.getEncoder();
cageLimitSwitch = new DigitalInput(ClimberPivotConstants.kClimberLimitSwitchID); //cageLimitSwitch = new DigitalInput(ClimberPivotConstants.kClimberLimitSwitchID);
pidController = new PIDController(
ClimberPivotConstants.kPIDControllerP,
ClimberPivotConstants.kPIDControllerI,
ClimberPivotConstants.kPIDControllerD
);
} }
public Command runPivot(double speed) { public Command runPivot(double speed) {
@@ -42,18 +40,29 @@ public class ClimberPivot extends SubsystemBase {
}); });
} }
public Command goToAngle(double setpoint, double timeout) { /**
* Runs the climber until it is at setpoint
*
* @param speed The speed at which the pivot runs
* @param setpoint The target position of the climber
* @return Sets the motor speed until at the target position
*/
public Command climb(double setpoint, double speed) {
return run(() -> { return run(() -> {
pivotMotor.set( pivotMotor.set(speed);
pidController.calculate( }).until(() -> neoEncoder.getPosition() >= setpoint);
neoEncoder.getPosition(),
setpoint
)
);
}).withTimeout(timeout);
} }
public boolean getCageLimitSwitch() { /**
return cageLimitSwitch.get(); * Returns the limit switch attached to the climber. Detects if the cage is present
*
* @return Is the cage in the climber
*/
// public boolean getCageLimitSwitch() {
// return cageLimitSwitch.get();
//}
public double getEncoderPosition() {
return neoEncoder.getPosition();
} }
} }

View File

@@ -1,12 +1,15 @@
package frc.robot.subsystems; package frc.robot.subsystems;
import com.revrobotics.spark.SparkMax; import com.revrobotics.spark.SparkMax;
import com.revrobotics.spark.SparkBase.PersistMode;
import com.revrobotics.spark.SparkBase.ResetMode;
import com.revrobotics.spark.SparkLowLevel.MotorType; import com.revrobotics.spark.SparkLowLevel.MotorType;
import edu.wpi.first.wpilibj2.command.Command; import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.SubsystemBase; import edu.wpi.first.wpilibj2.command.SubsystemBase;
import frc.robot.constants.ClimberRollersConstants; import frc.robot.constants.ClimberRollersConstants;
//TODO Figure out a way to detect if we're at the top of the cage
public class ClimberRollers extends SubsystemBase { public class ClimberRollers extends SubsystemBase {
private SparkMax rollerMotor; private SparkMax rollerMotor;
@@ -15,8 +18,20 @@ public class ClimberRollers extends SubsystemBase {
ClimberRollersConstants.kRollerMotorID, ClimberRollersConstants.kRollerMotorID,
MotorType.kBrushless MotorType.kBrushless
); );
rollerMotor.configure(
ClimberRollersConstants.motorConfig,
ResetMode.kResetSafeParameters,
PersistMode.kPersistParameters
);
} }
/**
* Runs the rollers at a set speed
*
* @param speed The speed in which the roller runs
* @return Runs the rollers at a set speed
*/
public Command runRoller(double speed) { public Command runRoller(double speed) {
return run(() -> { return run(() -> {
rollerMotor.set(speed); rollerMotor.set(speed);

View File

@@ -4,21 +4,26 @@
package frc.robot.subsystems; package frc.robot.subsystems;
import java.util.Optional;
import java.util.function.BooleanSupplier; import java.util.function.BooleanSupplier;
import java.util.function.DoubleSupplier; import java.util.function.DoubleSupplier;
import com.pathplanner.lib.auto.AutoBuilder;
import com.studica.frc.AHRS;
import com.studica.frc.AHRS.NavXComType;
import edu.wpi.first.math.MathUtil; import edu.wpi.first.math.MathUtil;
import edu.wpi.first.math.estimator.SwerveDrivePoseEstimator;
import edu.wpi.first.math.geometry.Pose2d; import edu.wpi.first.math.geometry.Pose2d;
import edu.wpi.first.math.geometry.Rotation2d; import edu.wpi.first.math.geometry.Rotation2d;
import edu.wpi.first.math.kinematics.ChassisSpeeds; import edu.wpi.first.math.kinematics.ChassisSpeeds;
import edu.wpi.first.math.kinematics.SwerveDriveKinematics; import edu.wpi.first.math.kinematics.SwerveDriveKinematics;
import edu.wpi.first.math.kinematics.SwerveDriveOdometry;
import edu.wpi.first.math.kinematics.SwerveModulePosition; import edu.wpi.first.math.kinematics.SwerveModulePosition;
import edu.wpi.first.math.kinematics.SwerveModuleState; import edu.wpi.first.math.kinematics.SwerveModuleState;
import edu.wpi.first.wpilibj.ADIS16470_IMU; import edu.wpi.first.wpilibj.DriverStation;
import edu.wpi.first.wpilibj.ADIS16470_IMU.IMUAxis;
import edu.wpi.first.wpilibj2.command.Command; import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.SubsystemBase; import edu.wpi.first.wpilibj2.command.SubsystemBase;
import frc.robot.constants.AutoConstants;
import frc.robot.constants.DrivetrainConstants; import frc.robot.constants.DrivetrainConstants;
import frc.robot.constants.OIConstants; import frc.robot.constants.OIConstants;
@@ -30,10 +35,10 @@ public class Drivetrain extends SubsystemBase {
protected MAXSwerveModule m_rearRight; protected MAXSwerveModule m_rearRight;
// The gyro sensor // The gyro sensor
private ADIS16470_IMU m_gyro; private AHRS ahrs;
// Odometry class for tracking robot pose // Odometry class for tracking robot pose
private SwerveDriveOdometry m_odometry; private SwerveDrivePoseEstimator m_estimator;
/** Creates a new DriveSubsystem. */ /** Creates a new DriveSubsystem. */
public Drivetrain() { public Drivetrain() {
@@ -61,11 +66,43 @@ public class Drivetrain extends SubsystemBase {
DrivetrainConstants.kBackRightChassisAngularOffset DrivetrainConstants.kBackRightChassisAngularOffset
); );
m_gyro = new ADIS16470_IMU(); ahrs = new AHRS(NavXComType.kMXP_SPI);
m_odometry = new SwerveDriveOdometry( m_estimator = new SwerveDrivePoseEstimator(
DrivetrainConstants.kDriveKinematics, DrivetrainConstants.kDriveKinematics,
Rotation2d.fromDegrees(m_gyro.getAngle(IMUAxis.kZ)), Rotation2d.fromDegrees(ahrs.getAngle()),
new SwerveModulePosition[] {
m_frontLeft.getPosition(),
m_frontRight.getPosition(),
m_rearLeft.getPosition(),
m_rearRight.getPosition()
},
new Pose2d()
);
AutoBuilder.configure(
this::getPose,
this::resetOdometry,
this::getCurrentChassisSpeeds,
this::driveWithChassisSpeeds,
AutoConstants.kPPDriveController,
AutoConstants.kRobotConfig,
() -> {
Optional<DriverStation.Alliance> alliance = DriverStation.getAlliance();
if (alliance.isPresent()) {
return alliance.get() == DriverStation.Alliance.Red;
}
return false;
},
this
);
}
@Override
public void periodic() {
// Update the odometry in the periodic block
m_estimator.update(
Rotation2d.fromDegrees(getGyroValue()),
new SwerveModulePosition[] { new SwerveModulePosition[] {
m_frontLeft.getPosition(), m_frontLeft.getPosition(),
m_frontRight.getPosition(), m_frontRight.getPosition(),
@@ -74,17 +111,21 @@ public class Drivetrain extends SubsystemBase {
}); });
} }
@Override public ChassisSpeeds getCurrentChassisSpeeds() {
public void periodic() { return DrivetrainConstants.kDriveKinematics.toChassisSpeeds(
// Update the odometry in the periodic block m_frontLeft.getState(),
m_odometry.update( m_frontRight.getState(),
Rotation2d.fromDegrees(m_gyro.getAngle(IMUAxis.kZ)), m_rearLeft.getState(),
new SwerveModulePosition[] { m_rearRight.getState()
m_frontLeft.getPosition(), );
m_frontRight.getPosition(), }
m_rearLeft.getPosition(),
m_rearRight.getPosition() public void driveWithChassisSpeeds(ChassisSpeeds speeds) {
}); ChassisSpeeds discreteSpeeds = ChassisSpeeds.discretize(speeds, 0.2);
SwerveModuleState[] newStates = DrivetrainConstants.kDriveKinematics.toSwerveModuleStates(discreteSpeeds);
SwerveDriveKinematics.desaturateWheelSpeeds(newStates, DrivetrainConstants.kMaxSpeedMetersPerSecond);
setModuleStates(newStates);
} }
/** /**
@@ -93,7 +134,7 @@ public class Drivetrain extends SubsystemBase {
* @return The pose. * @return The pose.
*/ */
public Pose2d getPose() { public Pose2d getPose() {
return m_odometry.getPoseMeters(); return m_estimator.getEstimatedPosition();
} }
/** /**
@@ -102,14 +143,7 @@ public class Drivetrain extends SubsystemBase {
* @param pose The pose to which to set the odometry. * @param pose The pose to which to set the odometry.
*/ */
public void resetOdometry(Pose2d pose) { public void resetOdometry(Pose2d pose) {
m_odometry.resetPosition( m_estimator.resetPose(
Rotation2d.fromDegrees(m_gyro.getAngle(IMUAxis.kZ)),
new SwerveModulePosition[] {
m_frontLeft.getPosition(),
m_frontRight.getPosition(),
m_rearLeft.getPosition(),
m_rearRight.getPosition()
},
pose pose
); );
} }
@@ -144,7 +178,7 @@ public class Drivetrain extends SubsystemBase {
var swerveModuleStates = DrivetrainConstants.kDriveKinematics.toSwerveModuleStates( var swerveModuleStates = DrivetrainConstants.kDriveKinematics.toSwerveModuleStates(
fieldRelative fieldRelative
? ChassisSpeeds.fromFieldRelativeSpeeds(xSpeedDelivered, ySpeedDelivered, rotDelivered, ? ChassisSpeeds.fromFieldRelativeSpeeds(xSpeedDelivered, ySpeedDelivered, rotDelivered,
Rotation2d.fromDegrees(m_gyro.getAngle(IMUAxis.kZ))) Rotation2d.fromDegrees(getGyroValue()))
: new ChassisSpeeds(xSpeedDelivered, ySpeedDelivered, rotDelivered)); : new ChassisSpeeds(xSpeedDelivered, ySpeedDelivered, rotDelivered));
SwerveDriveKinematics.desaturateWheelSpeeds( SwerveDriveKinematics.desaturateWheelSpeeds(
swerveModuleStates, DrivetrainConstants.kMaxSpeedMetersPerSecond); swerveModuleStates, DrivetrainConstants.kMaxSpeedMetersPerSecond);
@@ -194,7 +228,11 @@ public class Drivetrain extends SubsystemBase {
/** Zeroes the heading of the robot. */ /** Zeroes the heading of the robot. */
public void zeroHeading() { public void zeroHeading() {
m_gyro.reset(); ahrs.reset();
}
public double getGyroValue() {
return ahrs.getAngle() * (DrivetrainConstants.kGyroReversed ? -1 : 1);
} }
/** /**
@@ -203,7 +241,7 @@ public class Drivetrain extends SubsystemBase {
* @return the robot's heading in degrees, from -180 to 180 * @return the robot's heading in degrees, from -180 to 180
*/ */
public double getHeading() { public double getHeading() {
return Rotation2d.fromDegrees(m_gyro.getAngle(IMUAxis.kZ)).getDegrees(); return Rotation2d.fromDegrees(getGyroValue()).getDegrees();
} }
/** /**
@@ -212,6 +250,10 @@ public class Drivetrain extends SubsystemBase {
* @return The turn rate of the robot, in degrees per second * @return The turn rate of the robot, in degrees per second
*/ */
public double getTurnRate() { public double getTurnRate() {
return m_gyro.getRate(IMUAxis.kZ) * (DrivetrainConstants.kGyroReversed ? -1.0 : 1.0); return ahrs.getRate() * (DrivetrainConstants.kGyroReversed ? -1.0 : 1.0);
}
public void addVisionMeasurement(Pose2d pose, double timestamp){
m_estimator.addVisionMeasurement(pose, timestamp);
} }
} }

View File

@@ -3,13 +3,17 @@ package frc.robot.subsystems;
import java.util.function.DoubleSupplier; import java.util.function.DoubleSupplier;
import com.revrobotics.RelativeEncoder; import com.revrobotics.RelativeEncoder;
import com.revrobotics.spark.ClosedLoopSlot;
import com.revrobotics.spark.SparkBase;
import com.revrobotics.spark.SparkClosedLoopController;
import com.revrobotics.spark.SparkMax; import com.revrobotics.spark.SparkMax;
import com.revrobotics.spark.SparkBase.ControlType;
import com.revrobotics.spark.SparkBase.PersistMode; import com.revrobotics.spark.SparkBase.PersistMode;
import com.revrobotics.spark.SparkBase.ResetMode; import com.revrobotics.spark.SparkBase.ResetMode;
import com.revrobotics.spark.SparkLowLevel.MotorType; import com.revrobotics.spark.SparkLowLevel.MotorType;
import edu.wpi.first.math.MathUtil;
import edu.wpi.first.math.controller.ElevatorFeedforward; import edu.wpi.first.math.controller.ElevatorFeedforward;
import edu.wpi.first.math.controller.PIDController;
import edu.wpi.first.wpilibj.DigitalInput; import edu.wpi.first.wpilibj.DigitalInput;
import edu.wpi.first.wpilibj2.command.Command; import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.SubsystemBase; import edu.wpi.first.wpilibj2.command.SubsystemBase;
@@ -19,13 +23,12 @@ public class Elevator extends SubsystemBase {
protected SparkMax elevatorMotor1; protected SparkMax elevatorMotor1;
protected SparkMax elevatorMotor2; protected SparkMax elevatorMotor2;
private SparkClosedLoopController elevatorClosedLoop;
protected RelativeEncoder encoder; protected RelativeEncoder encoder;
private DigitalInput bottomLimitSwitch; private DigitalInput bottomLimitSwitch;
private PIDController positionController;
private PIDController velocityController;
private ElevatorFeedforward feedForward; private ElevatorFeedforward feedForward;
public Elevator() { public Elevator() {
@@ -45,8 +48,10 @@ public class Elevator extends SubsystemBase {
PersistMode.kPersistParameters PersistMode.kPersistParameters
); );
elevatorClosedLoop = elevatorMotor1.getClosedLoopController();
elevatorMotor2.configure( elevatorMotor2.configure(
ElevatorConstants.motorConfig.follow(ElevatorConstants.kElevatorMotor1ID), ElevatorConstants.motorConfig2.follow(ElevatorConstants.kElevatorMotor1ID),
ResetMode.kResetSafeParameters, ResetMode.kResetSafeParameters,
PersistMode.kPersistParameters PersistMode.kPersistParameters
); );
@@ -57,17 +62,13 @@ public class Elevator extends SubsystemBase {
ElevatorConstants.kBottomLimitSwitchID ElevatorConstants.kBottomLimitSwitchID
); );
positionController = new PIDController( /*
ElevatorConstants.kPositionControllerP,
ElevatorConstants.kPositionControllerI,
ElevatorConstants.kPositionControllerD
);
velocityController = new PIDController( velocityController = new PIDController(
ElevatorConstants.kVelocityControllerP, ElevatorConstants.kVelocityControllerP,
ElevatorConstants.kVelocityControllerI, ElevatorConstants.kVelocityControllerI,
ElevatorConstants.kVelocityControllerD ElevatorConstants.kVelocityControllerD
); );
*/
feedForward = new ElevatorFeedforward( feedForward = new ElevatorFeedforward(
ElevatorConstants.kFeedForwardS, ElevatorConstants.kFeedForwardS,
@@ -76,6 +77,13 @@ public class Elevator extends SubsystemBase {
); );
} }
@Override
public void periodic() {
if (!getBottomLimitSwitch()) {
encoder.setPosition(0);
}
}
/** /**
* Returns whether or not the motion is safe relative to the encoder's current position * Returns whether or not the motion is safe relative to the encoder's current position
* and the elevator brace position * and the elevator brace position
@@ -94,13 +102,30 @@ public class Elevator extends SubsystemBase {
* @return Is the motion safe * @return Is the motion safe
*/ */
public boolean isMotionSafe(double motionTarget) { public boolean isMotionSafe(double motionTarget) {
return motionTarget > ElevatorConstants.kElevatorBracePosition; return motionTarget > ElevatorConstants.kBracePosition;
} }
//manual command that keeps ouput speed consistent no matter the direction /**
public Command runElevator(DoubleSupplier speed) { * A manual translation command that uses feed forward calculation to maintain position
*
* @param speed The speed at which the elevator translates
* @return Sets motor voltage to translate the elevator and maintain position
*/
public Command runManualElevator(double speed) {
return run(() -> { return run(() -> {
double realSpeedTarget = speed.getAsDouble() * ElevatorConstants.kElevatorMaxVelocity; elevatorMotor1.set(speed);
});
}
/**
* A manual translation command that will move the elevator using a consistent velocity disregarding direction
*
* @param speed How fast the elevator moves
* @return Sets motor voltage to move the elevator relative to the speed parameter
*
public Command runAssistedElevator(DoubleSupplier speed) {
return run(() -> {
double realSpeedTarget = speed.getAsDouble() * ElevatorConstants.kMaxVelocity;
double voltsOut = velocityController.calculate( double voltsOut = velocityController.calculate(
encoder.getVelocity(), encoder.getVelocity(),
@@ -108,16 +133,64 @@ public class Elevator extends SubsystemBase {
) + feedForward.calculate(realSpeedTarget); ) + feedForward.calculate(realSpeedTarget);
elevatorMotor1.setVoltage(voltsOut); elevatorMotor1.setVoltage(voltsOut);
}).until(bottomLimitSwitch::get); }).until(
() -> bottomLimitSwitch.get() || encoder.getPosition() >= ElevatorConstants.kMaxHeight);
}
*/
public Command manualControl(DoubleSupplier speed){
return run(() -> {
elevatorClosedLoop.setReference(speed.getAsDouble(), ControlType.kDutyCycle);
});
} }
/**
* Moves the elevator to a target destination (setpoint).
* If the setpoint is 0, the elevator will creep down to hit the limit switch
*
* @param setpoint Target destination of the subsystem
* @param timeout Time to achieve the setpoint before quitting
* @return Sets motor voltage to achieve the target destination
*/
public Command goToSetpoint(double setpoint) {
double clampedSetpoint = MathUtil.clamp(
setpoint,
0,
ElevatorConstants.kMaxHeight
);
//go to setpoint command return run(() -> {
public Command goToSetpoint(double setpoint, double timeout) {
elevatorClosedLoop.setReference(clampedSetpoint,
SparkBase.ControlType.kMAXMotionPositionControl,
ClosedLoopSlot.kSlot0,
feedForward.calculate(0)
);
});
/*
if (clampedSetpoint == 0) {
return run(() -> { return run(() -> {
double voltsOut = positionController.calculate( double voltsOut = positionController.calculate(
encoder.getPosition(), encoder.getPosition(),
setpoint clampedSetpoint
) + feedForward.calculate(0);
elevatorMotor1.setVoltage(voltsOut);
}).until(
() -> positionController.atSetpoint() || bottomLimitSwitch.get()
).withTimeout(timeout)
.andThen(Commands.either(
runAssistedElevator(() -> 0),
runAssistedElevator(() -> -.2),
bottomLimitSwitch::get
)).withTimeout(timeout);
} else {
return run(() -> {
double voltsOut = positionController.calculate(
encoder.getPosition(),
clampedSetpoint
) + feedForward.calculate(0); ) + feedForward.calculate(0);
elevatorMotor1.setVoltage(voltsOut); elevatorMotor1.setVoltage(voltsOut);
@@ -125,8 +198,26 @@ public class Elevator extends SubsystemBase {
() -> positionController.atSetpoint() || bottomLimitSwitch.get() () -> positionController.atSetpoint() || bottomLimitSwitch.get()
).withTimeout(timeout); ).withTimeout(timeout);
} }
*/
}
/**
* Returns the current encoder position
*
* @return Current encoder position
*/
public double getEncoderPosition() { public double getEncoderPosition() {
return encoder.getPosition(); return encoder.getPosition();
} }
/**
* Returns the value of the bottom limit switch on the elevator (false = disabled, true = enabled)
*
* @return The value of bottomLimitSwitch
*/
public boolean getBottomLimitSwitch() {
return bottomLimitSwitch.get();
}
} }

View File

@@ -1,36 +0,0 @@
package frc.robot.subsystems;
import com.revrobotics.spark.SparkMax;
import com.revrobotics.spark.SparkLowLevel.MotorType;
import edu.wpi.first.wpilibj.DigitalInput;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.SubsystemBase;
import frc.robot.constants.IndexerConstants;
public class Indexer extends SubsystemBase {
private SparkMax indexerMotor;
private DigitalInput indexerBeamBreak;
public Indexer() {
indexerMotor = new SparkMax(
IndexerConstants.kIndexerMotorID,
MotorType.kBrushless
);
indexerBeamBreak = new DigitalInput(IndexerConstants.kIndexerBeamBreakID);
}
public Command runIndexer(double speed) {
return run(() -> {
indexerMotor.set(speed);
});
}
public Command indexCoral(double speed) {
return run(() -> {
indexerMotor.set(speed);
}).until(indexerBeamBreak::get);
}
}

View File

@@ -15,21 +15,22 @@ import com.revrobotics.spark.SparkBase.ControlType;
import com.revrobotics.spark.SparkBase.PersistMode; import com.revrobotics.spark.SparkBase.PersistMode;
import com.revrobotics.spark.SparkBase.ResetMode; import com.revrobotics.spark.SparkBase.ResetMode;
import com.revrobotics.spark.SparkLowLevel.MotorType; import com.revrobotics.spark.SparkLowLevel.MotorType;
import com.ctre.phoenix6.controls.VelocityVoltage;
import com.ctre.phoenix6.hardware.TalonFX;
import com.revrobotics.AbsoluteEncoder; import com.revrobotics.AbsoluteEncoder;
import com.revrobotics.RelativeEncoder;
import frc.robot.constants.ModuleConstants; import frc.robot.constants.ModuleConstants;
public class MAXSwerveModule { public class MAXSwerveModule {
private final SparkMax m_drivingSpark; private final TalonFX m_drive;
private final SparkMax m_turningSpark; private final SparkMax m_turningSpark;
private final RelativeEncoder m_drivingEncoder;
private final AbsoluteEncoder m_turningEncoder; private final AbsoluteEncoder m_turningEncoder;
private final SparkClosedLoopController m_drivingClosedLoopController;
private final SparkClosedLoopController m_turningClosedLoopController; private final SparkClosedLoopController m_turningClosedLoopController;
private final VelocityVoltage driveVelocityRequest;
private double m_chassisAngularOffset = 0; private double m_chassisAngularOffset = 0;
private SwerveModuleState m_desiredState = new SwerveModuleState(0.0, new Rotation2d()); private SwerveModuleState m_desiredState = new SwerveModuleState(0.0, new Rotation2d());
@@ -40,26 +41,29 @@ public class MAXSwerveModule {
* Encoder. * Encoder.
*/ */
public MAXSwerveModule(int drivingCANId, int turningCANId, double chassisAngularOffset) { public MAXSwerveModule(int drivingCANId, int turningCANId, double chassisAngularOffset) {
m_drivingSpark = new SparkMax(drivingCANId, MotorType.kBrushless); m_drive = new TalonFX(drivingCANId);
m_turningSpark = new SparkMax(turningCANId, MotorType.kBrushless); m_turningSpark = new SparkMax(turningCANId, MotorType.kBrushless);
m_drivingEncoder = m_drivingSpark.getEncoder();
m_turningEncoder = m_turningSpark.getAbsoluteEncoder(); m_turningEncoder = m_turningSpark.getAbsoluteEncoder();
m_drivingClosedLoopController = m_drivingSpark.getClosedLoopController();
m_turningClosedLoopController = m_turningSpark.getClosedLoopController(); m_turningClosedLoopController = m_turningSpark.getClosedLoopController();
driveVelocityRequest = new VelocityVoltage(0).withSlot(0);
// Apply the respective configurations to the SPARKS. Reset parameters before // Apply the respective configurations to the SPARKS. Reset parameters before
// applying the configuration to bring the SPARK to a known good state. Persist // applying the configuration to bring the SPARK to a known good state. Persist
// the settings to the SPARK to avoid losing them on a power cycle. // the settings to the SPARK to avoid losing them on a power cycle.
m_drivingSpark.configure(ModuleConstants.drivingConfig, ResetMode.kResetSafeParameters, m_drive.getConfigurator().apply(ModuleConstants.kDriveCurrentLimitConfig);
PersistMode.kPersistParameters); m_drive.getConfigurator().apply(ModuleConstants.kDriveFeedConfig);
m_drive.getConfigurator().apply(ModuleConstants.kDriveMotorConfig);
m_drive.getConfigurator().apply(ModuleConstants.kDriveSlot0Config);
m_turningSpark.configure(ModuleConstants.turningConfig, ResetMode.kResetSafeParameters, m_turningSpark.configure(ModuleConstants.turningConfig, ResetMode.kResetSafeParameters,
PersistMode.kPersistParameters); PersistMode.kPersistParameters);
m_chassisAngularOffset = chassisAngularOffset; m_chassisAngularOffset = chassisAngularOffset;
m_desiredState.angle = new Rotation2d(m_turningEncoder.getPosition()); m_desiredState.angle = new Rotation2d(m_turningEncoder.getPosition());
m_drivingEncoder.setPosition(0); m_drive.setPosition(0);
} }
/** /**
@@ -70,7 +74,7 @@ public class MAXSwerveModule {
public SwerveModuleState getState() { public SwerveModuleState getState() {
// Apply chassis angular offset to the encoder position to get the position // Apply chassis angular offset to the encoder position to get the position
// relative to the chassis. // relative to the chassis.
return new SwerveModuleState(m_drivingEncoder.getVelocity(), return new SwerveModuleState(m_drive.getVelocity().getValueAsDouble(),
new Rotation2d(m_turningEncoder.getPosition() - m_chassisAngularOffset)); new Rotation2d(m_turningEncoder.getPosition() - m_chassisAngularOffset));
} }
@@ -82,8 +86,7 @@ public class MAXSwerveModule {
public SwerveModulePosition getPosition() { public SwerveModulePosition getPosition() {
// Apply chassis angular offset to the encoder position to get the position // Apply chassis angular offset to the encoder position to get the position
// relative to the chassis. // relative to the chassis.
return new SwerveModulePosition( return new SwerveModulePosition(m_drive.getPosition().getValueAsDouble(),
m_drivingEncoder.getPosition(),
new Rotation2d(m_turningEncoder.getPosition() - m_chassisAngularOffset)); new Rotation2d(m_turningEncoder.getPosition() - m_chassisAngularOffset));
} }
@@ -102,14 +105,21 @@ public class MAXSwerveModule {
correctedDesiredState.optimize(new Rotation2d(m_turningEncoder.getPosition())); correctedDesiredState.optimize(new Rotation2d(m_turningEncoder.getPosition()));
// Command driving and turning SPARKS towards their respective setpoints. // Command driving and turning SPARKS towards their respective setpoints.
m_drivingClosedLoopController.setReference(correctedDesiredState.speedMetersPerSecond, ControlType.kVelocity); m_drive.setControl(
driveVelocityRequest.withVelocity(
correctedDesiredState.speedMetersPerSecond
).withFeedForward(
correctedDesiredState.speedMetersPerSecond
)
);
m_turningClosedLoopController.setReference(correctedDesiredState.angle.getRadians(), ControlType.kPosition); m_turningClosedLoopController.setReference(correctedDesiredState.angle.getRadians(), ControlType.kPosition);
m_desiredState = desiredState; m_desiredState = desiredState;
} }
public void setVoltageDrive(double voltage){ public void setVoltageDrive(double voltage){
m_drivingSpark.setVoltage(voltage); m_drive.setVoltage(voltage);
} }
public void setVoltageTurn(double voltage) { public void setVoltageTurn(double voltage) {
@@ -117,7 +127,7 @@ public class MAXSwerveModule {
} }
public double getVoltageDrive() { public double getVoltageDrive() {
return m_drivingSpark.get() * RobotController.getBatteryVoltage(); return m_drive.get() * RobotController.getBatteryVoltage();
} }
public double getVoltageTurn() { public double getVoltageTurn() {
@@ -126,6 +136,6 @@ public class MAXSwerveModule {
/** Zeroes all the SwerveModule encoders. */ /** Zeroes all the SwerveModule encoders. */
public void resetEncoders() { public void resetEncoders() {
m_drivingEncoder.setPosition(0); m_drive.setPosition(0);
} }
} }

View File

@@ -1,6 +1,10 @@
package frc.robot.subsystems; package frc.robot.subsystems;
import java.util.function.DoubleSupplier;
import com.revrobotics.spark.SparkMax; import com.revrobotics.spark.SparkMax;
import com.revrobotics.spark.SparkBase.PersistMode;
import com.revrobotics.spark.SparkBase.ResetMode;
import com.revrobotics.spark.SparkLowLevel.MotorType; import com.revrobotics.spark.SparkLowLevel.MotorType;
import edu.wpi.first.wpilibj.DigitalInput; import edu.wpi.first.wpilibj.DigitalInput;
@@ -12,7 +16,7 @@ public class Manipulator extends SubsystemBase {
private SparkMax manipulatorMotor; private SparkMax manipulatorMotor;
private DigitalInput coralBeamBreak; private DigitalInput coralBeamBreak;
private DigitalInput algaeBeamBreak; // private DigitalInput algaeBeamBreak;
public Manipulator() { public Manipulator() {
manipulatorMotor = new SparkMax( manipulatorMotor = new SparkMax(
@@ -20,19 +24,60 @@ public class Manipulator extends SubsystemBase {
MotorType.kBrushless MotorType.kBrushless
); );
manipulatorMotor.configure(
ManipulatorConstants.motorConfig,
ResetMode.kResetSafeParameters,
PersistMode.kPersistParameters
);
coralBeamBreak = new DigitalInput(ManipulatorConstants.kCoralBeamBreakID); coralBeamBreak = new DigitalInput(ManipulatorConstants.kCoralBeamBreakID);
algaeBeamBreak = new DigitalInput(ManipulatorConstants.kAlgaeBeamBreakID); // algaeBeamBreak = new DigitalInput(ManipulatorConstants.kAlgaeBeamBreakID);
} }
public Command runManipulator(double speed) { /**
* The default command for the manipulator that either stops the manipulator or slowly
* runs the manipulator to retain the algae
*
* @return Returns a command that sets the speed of the motor
*/
public Command defaultCommand() {
return run(() -> { return run(() -> {
manipulatorMotor.set(speed); //runUntilCollected(0.1);
manipulatorMotor.set(0);
}); });
} }
public Command runUntilCollected(double speed, boolean coral) { /**
* Runs the manipulator at a set speed with the direction based on the coral parameter
*
* @param speed The speed at which the manipulator runs
* @param coral Is the manipulator manipulating a coral? (True = Coral, False = Algae)
* @return Returns a command that sets the speed of the motor
*/
public Command runManipulator(DoubleSupplier speed, boolean coral) {
return run(() -> { return run(() -> {
manipulatorMotor.set(coral ? speed : speed * -1); manipulatorMotor.set(
}).until(() -> coralBeamBreak.get() || algaeBeamBreak.get()); coral ? speed.getAsDouble() : speed.getAsDouble() * -1
);
});
}
/**
* Runs the manipulator until either the algae or coral beam break reads true
*
* @param speed The speed at which the manipulator is run
* @param coral Is the object a coral? (True = Coral, False = Algae)
* @return Returns a command that sets the speed of the motor
*/
public Command runUntilCollected(DoubleSupplier speed) {
return run(() -> {
manipulatorMotor.set(
speed.getAsDouble()
);
}).until(() -> !coralBeamBreak.get());
}
public boolean getCoralBeamBreak() {
return coralBeamBreak.get();
} }
} }

View File

@@ -0,0 +1,136 @@
package frc.robot.subsystems;
import com.revrobotics.spark.SparkMax;
import com.revrobotics.spark.ClosedLoopSlot;
import com.revrobotics.spark.SparkAbsoluteEncoder;
import com.revrobotics.spark.SparkBase;
import com.revrobotics.spark.SparkBase.PersistMode;
import com.revrobotics.spark.SparkBase.ResetMode;
import com.revrobotics.spark.SparkClosedLoopController;
import com.revrobotics.spark.SparkLowLevel.MotorType;
import edu.wpi.first.math.MathUtil;
import edu.wpi.first.math.controller.ArmFeedforward;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.SubsystemBase;
import frc.robot.constants.ManipulatorPivotConstants;
public class ManipulatorPivot extends SubsystemBase {
protected SparkMax armMotor;
private ArmFeedforward feedForward;
private SparkClosedLoopController pivotClosedLoopController;
private SparkAbsoluteEncoder absoluteEncoder;
public ManipulatorPivot() {
armMotor = new SparkMax(
ManipulatorPivotConstants.kArmMotorID,
MotorType.kBrushless
);
armMotor.configure(
ManipulatorPivotConstants.motorConfig,
ResetMode.kResetSafeParameters,
PersistMode.kPersistParameters
);
pivotClosedLoopController = armMotor.getClosedLoopController();
absoluteEncoder = armMotor.getAbsoluteEncoder();
feedForward = new ArmFeedforward(
ManipulatorPivotConstants.kFeedForwardS,
ManipulatorPivotConstants.kFeedForwardG,
ManipulatorPivotConstants.kFeedForwardV
);
}
/**
* Returns whether or not the motion is safe relative to the encoder's current position
* and the arm safe stow position
*
* @return Is the motion safe
*/
public boolean isMotionSafe() {
return isMotionSafe(getEncoderPosition());
}
/**
* Returns whether or not the motion is safe relative to some target position and the
* arm safe stow position
*
* @param motionTarget The target position to determine the safety of
* @return Is the motion safe
*/
public boolean isMotionSafe(double motionTarget) {
return motionTarget > ManipulatorPivotConstants.kArmSafeStowPosition;
}
/**
* A manual rotation command that will move the elevator using a consistent velocity disregarding direction
*
* @param speed The velocity at which the arm rotates
* @return Sets motor voltage to achieve the target velocity
*/
/*
public Command runAssistedPivot(DoubleSupplier speed) {
double clampedSpeed = MathUtil.clamp(
speed.getAsDouble(),
-1,
1
);
return run(() -> {
double realSpeedTarget = clampedSpeed * ManipulatorPivotConstants.kPivotMaxVelocity;
double voltsOut = velocityController.calculate(
getEncoderVelocity(),
realSpeedTarget
) + feedForward.calculate(
getEncoderPosition(),
getEncoderVelocity()
);
armMotor.setVoltage(voltsOut);
});
}
*/
/**
* Moves the arm to a target destination (setpoint)
*
* @param setpoint Target destination of the subsystem
* @param timeout Time to achieve the setpoint before quitting
* @return Sets motor voltage to achieve the target destination
*/
public Command goToSetpoint(double setpoint) {
double clampedSetpoint = MathUtil.clamp(
setpoint,
0,
ManipulatorPivotConstants.kRotationLimit
);
return run(() -> {
pivotClosedLoopController.setReference(clampedSetpoint,
SparkBase.ControlType.kMAXMotionPositionControl,
ClosedLoopSlot.kSlot0,
feedForward.calculate(absoluteEncoder.getPosition() + ManipulatorPivotConstants.kFFGravityOffset, absoluteEncoder.getVelocity()));
});
}
/**
* Returns the CANCoder's position in radians
*
* @return CANCoder's position in radians
*/
public double getEncoderPosition() {
return absoluteEncoder.getPosition();
}
/**
* Returns the CANCoder's velocity in radians per second
*
* @return CANCoder's velocity in radians per second
*/
public double getEncoderVelocity() {
return absoluteEncoder.getVelocity();
}
}

View File

@@ -0,0 +1,146 @@
package frc.robot.subsystems;
import java.util.function.DoubleSupplier;
import edu.wpi.first.math.geometry.Pose2d;
import edu.wpi.first.math.geometry.Rotation2d;
import edu.wpi.first.math.geometry.Transform2d;
import edu.wpi.first.math.geometry.Translation2d;
import edu.wpi.first.networktables.BooleanSubscriber;
import edu.wpi.first.networktables.DoubleSubscriber;
import edu.wpi.first.networktables.NetworkTable;
import edu.wpi.first.networktables.NetworkTableInstance;
import frc.robot.constants.VisionConstants;
public class Vision{
private DoubleSubscriber blackRobotRelativeX;
private DoubleSubscriber blackRobotRelativeY;
private DoubleSubscriber blackRobotRelativeZ;
private DoubleSubscriber blackClosestTag;
private BooleanSubscriber blackTagDetected;
private DoubleSubscriber blackFramerate;
private DoubleSubscriber orangeRobotRelativeX;
private DoubleSubscriber orangeRobotRelativeY;
private DoubleSubscriber orangeRobotRelativeZ;
private DoubleSubscriber orangeClosestTag;
private BooleanSubscriber orangeTagDetected;
private DoubleSubscriber orangeFramerate;
private DoubleSupplier gyroAngle;
public Vision(DoubleSupplier gyroAngle){
NetworkTableInstance inst = NetworkTableInstance.getDefault();
NetworkTable blackVisionTable = inst.getTable("black_Fiducial");
NetworkTable orangeVisionTable = inst.getTable("orange_Fiducial");
blackRobotRelativeX = orangeVisionTable.getDoubleTopic("blackRelativeX").subscribe(0.0);
blackRobotRelativeY = orangeVisionTable.getDoubleTopic("blackRelativeY").subscribe(0.0);
blackRobotRelativeZ = orangeVisionTable.getDoubleTopic("blackRelativeZ").subscribe(0.0);
blackClosestTag = blackVisionTable.getDoubleTopic("blackClosestTag").subscribe(0.0);
blackTagDetected = blackVisionTable.getBooleanTopic("blackTagDetected").subscribe(false);
blackFramerate = blackVisionTable.getDoubleTopic("blackFPS").subscribe(0.0);
orangeRobotRelativeX = orangeVisionTable.getDoubleTopic("orangeRelativeX").subscribe(0.0);
orangeRobotRelativeY = orangeVisionTable.getDoubleTopic("orangeRelativeY").subscribe(0.0);
orangeRobotRelativeZ = orangeVisionTable.getDoubleTopic("orangeRelativeZ").subscribe(0.0);
orangeClosestTag = orangeVisionTable.getDoubleTopic("orangeClosestTag").subscribe(0.0);
orangeTagDetected = orangeVisionTable.getBooleanTopic("orangeTagDetected").subscribe(false);
orangeFramerate = orangeVisionTable.getDoubleTopic("orangeFPS").subscribe(0.0);
}
public Pose2d relativeToGlobalPose2d(int tagID, Translation2d relativeCoords, Rotation2d gyroAngle){
Pose2d tag2dPose = new Pose2d(VisionConstants.globalTagCoords[tagID][0],
VisionConstants.globalTagCoords[tagID][1],
new Rotation2d());
Pose2d relative = new Pose2d(relativeCoords, gyroAngle);
Transform2d relative2dTransformation = new Transform2d(relative.getTranslation(), relative.getRotation());
Pose2d globalPose = tag2dPose.transformBy(relative2dTransformation.inverse());
return new Pose2d(globalPose.getTranslation(), gyroAngle);
}
public Pose2d getBlackGlobalPose(){
return relativeToGlobalPose2d(getBlackClosestTag(),
new Translation2d(getBlackRelativeX(), getBlackRelativeY()),
new Rotation2d(gyroAngle.getAsDouble()));
}
public double getBlackRelativeX(){
return blackRobotRelativeX.get();
}
public double getBlackRelativeY(){
return blackRobotRelativeY.get();
}
public double getBlackRelativeZ(){
return blackRobotRelativeZ.get();
}
public int getBlackClosestTag(){
return (int) blackClosestTag.get();
}
public double getBlackTimeStamp(){
return blackRobotRelativeX.getLastChange();
}
public boolean getBlackTagDetected(){
return blackTagDetected.get();
}
public double getBlackFPS(){
return blackFramerate.get();
}
public Pose2d getOrangeGlobalPose(){
return relativeToGlobalPose2d(getBlackClosestTag(),
new Translation2d(getBlackRelativeX(), getBlackRelativeY()),
new Rotation2d(gyroAngle.getAsDouble()));
}
public double getOrangeRelativeX(){
return orangeRobotRelativeX.get();
}
public double getOrangeRelativeY(){
return orangeRobotRelativeY.get();
}
public double getOrangeRelativeZ(){
return orangeRobotRelativeZ.get();
}
public int getOrangeClosestTag(){
return (int) orangeClosestTag.get();
}
public double getOrangeTimeStamp(){
return orangeRobotRelativeX.getLastChange();
}
public boolean getOrangeTagDetected(){
return orangeTagDetected.get();
}
public double getOrangeFPS(){
return orangeFramerate.get();
}
}

View File

@@ -0,0 +1,62 @@
package frc.robot.subsystems.sysid;
import static edu.wpi.first.units.Units.Volts;
import static edu.wpi.first.units.Units.Radians;
import static edu.wpi.first.units.Units.RadiansPerSecond;
import edu.wpi.first.units.measure.MutAngle;
import edu.wpi.first.units.measure.MutAngularVelocity;
import edu.wpi.first.units.measure.MutVoltage;
import edu.wpi.first.wpilibj.RobotController;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.sysid.SysIdRoutine;
import frc.robot.constants.ManipulatorPivotConstants;
import frc.robot.subsystems.ManipulatorPivot;
public class ManipulatorPivotSysID extends ManipulatorPivot {
private MutVoltage appliedVoltage;
private MutAngle pivotPosition;
private MutAngularVelocity pivotVelocity;
private SysIdRoutine routine;
public ManipulatorPivotSysID() {
super();
appliedVoltage = Volts.mutable(0);
pivotPosition = Radians.mutable(0);
pivotVelocity = RadiansPerSecond.mutable(0);
routine = new SysIdRoutine(
ManipulatorPivotConstants.kSysIDConfig,
new SysIdRoutine.Mechanism(
armMotor::setVoltage,
(log) -> {
log.motor("armMotor")
.voltage(appliedVoltage.mut_replace(
armMotor.get() * RobotController.getBatteryVoltage(), Volts
))
.angularPosition(pivotPosition.mut_replace(
getEncoderPosition(), Radians
))
.angularVelocity(pivotVelocity.mut_replace(
getEncoderVelocity(), RadiansPerSecond
));
},
this
)
);
}
public Command sysIdQuasistatic(SysIdRoutine.Direction direction) {
return routine.quasistatic(direction);
}
public Command sysIdDynamic(SysIdRoutine.Direction direction) {
return routine.dynamic(direction);
}
}