initial commit
106
FRC_Fiducial_Tracking/April_PNP_Live.py
Normal file
@ -0,0 +1,106 @@
|
||||
# Made by Tyler Jacques FRC Team 2648
|
||||
# Before deployment in competition comment out lines: 88, 89, and 97
|
||||
from picamera.array import PiRGBArray
|
||||
from picamera import PiCamera
|
||||
import time
|
||||
import cv2
|
||||
import apriltag
|
||||
import numpy as np
|
||||
import math
|
||||
from networktables import NetworkTables
|
||||
|
||||
|
||||
# translation vector units to inches tvec/71.22
|
||||
TVEC2IN = 1/71.22
|
||||
# Rotational vector radians to degrees
|
||||
RAD2DEG = 180/math.pi
|
||||
|
||||
# RPi camera recording setup.
|
||||
# For specs - https://www.raspberrypi.com/documentation/accessories/camera.html
|
||||
camera = PiCamera()
|
||||
camera.resolution = (640, 480)
|
||||
camera.framerate = 32
|
||||
rawCapture = PiRGBArray(camera, size=(640,480))
|
||||
|
||||
# focal length in pixels. You can calculate using camera spec sheet for more accuracy
|
||||
FOCAL_LEN_PIXELS = 528.6956522
|
||||
# camera matrix from Calibrate_Camera.py.
|
||||
camera_matrix = np.array([[FOCAL_LEN_PIXELS, 0., 308.94165115],
|
||||
[0., FOCAL_LEN_PIXELS, 221.9470321],
|
||||
[0., 0.,1.]])
|
||||
|
||||
# 3d object array
|
||||
objp = np.array([[240, 240, 0], [0, 0, 0], [480, 0, 0], [480, 480, 0], [0, 480, 0]], dtype=np.float32)
|
||||
# 2d image array
|
||||
axis = np.array([[0,0,0], [0,480,0], [480,480,0], [480,0,0], [0,0,-480], [0,480,-480], [480,480,-480], [480,0,-480]], dtype=np.float32)
|
||||
|
||||
NetworkTables.initialize(server="1234567890")
|
||||
vision_table = NetworkTables.getTable("Fiducial")
|
||||
|
||||
def connectionListener(connected, info):
|
||||
print(info, "; Connected=%s" % connected)
|
||||
|
||||
NetworkTables.addConnectionListener(connectionListener, immediateNotify=True)
|
||||
|
||||
def display_features(image, imgpts):
|
||||
# making lines on fiducial
|
||||
for i in range(0,4):
|
||||
f = i+1
|
||||
if f>3: f=0
|
||||
cv2.line(image, (int(det.corners[i][0]), int(det.corners[i][1])), (int(det.corners[f][0]), int(det.corners[f][1])), (0,0,255), 3)
|
||||
|
||||
imgpts = np.int32(imgpts).reshape(-1,2)
|
||||
# draw ground floor in green
|
||||
image = cv2.drawContours(image, [imgpts[:4]],-1,(0,255,0),-3)
|
||||
# draw pillars in blue color
|
||||
for i,j in zip(range(4),range(4,8)):
|
||||
image = cv2.line(image, tuple(imgpts[i]), tuple(imgpts[j]),(255),3)
|
||||
# draw top layer in red color
|
||||
image = cv2.drawContours(image, [imgpts[4:]],-1,(0,0,255),3)
|
||||
return image
|
||||
|
||||
time.sleep(0.1)
|
||||
for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
|
||||
frame_start = time.time()
|
||||
image = frame.array
|
||||
|
||||
#detecting april tags
|
||||
tagFrame = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
detector = apriltag.Detector()
|
||||
output = detector.detect(tagFrame)
|
||||
|
||||
for det in output:
|
||||
|
||||
tag_points = np.array([[det.center[0], det.center[1]], [det.corners[0][0], det.corners[0][1]], [det.corners[1][0], det.corners[1][1]], [det.corners[2][0], det.corners[2][1]], [det.corners[3][0], det.corners[3][1]]], dtype=np.float32)
|
||||
|
||||
dist = np.array([ 2.32929183e-01, -1.35534844e+00, -1.51912733e-03, -2.17960810e-03, 2.25537289e+00])
|
||||
|
||||
ret,rvecs, tvecs = cv2.solvePnP(objp, tag_points, camera_matrix, dist, flags=0)
|
||||
|
||||
tvecDist = (tvecs*TVEC2IN).tolist()
|
||||
rvecDeg = (rvecs*RAD2DEG).tolist()
|
||||
for i in range(0,len(tvecDist)):
|
||||
tvecDist[i] = float(tvecDist[i][0])
|
||||
for i in range(0,len(rvecDeg)):
|
||||
rvecDeg[i] = float(rvecDeg[i][0])
|
||||
|
||||
# comment out bottom two lines to eliminate drawing overlay
|
||||
imgpts, jac = cv2.projectPoints(axis, rvecs, tvecs, camera_matrix, dist)
|
||||
image = display_features(image, imgpts)
|
||||
|
||||
#print("tag"+str(det.tag_id)+"tvecs", tvecDist)
|
||||
#print("tag"+str(det.tag_id)+"rvecs", rvecDeg)
|
||||
vision_table.putNumberArray("tag"+str(det.tag_id)+"tvecs", tvecDist)
|
||||
vision_table.putNumberArray("tag"+str(det.tag_id)+"rvecs", rvecDeg)
|
||||
|
||||
#Showing image. comment to stop display and speed up detection
|
||||
cv2.imshow("Frame", image)
|
||||
|
||||
key = cv2.waitKey(1) & 0xFF
|
||||
rawCapture.truncate(0)
|
||||
if key ==ord("q"):
|
||||
break
|
||||
|
||||
# frame rate for performance
|
||||
FPS = (1/(time.time()-frame_start))
|
||||
#print(FPS)
|
BIN
FRC_Fiducial_Tracking/Calibration_Pics_RPi_Cam/1.jpg
Normal file
After Width: | Height: | Size: 217 KiB |
BIN
FRC_Fiducial_Tracking/Calibration_Pics_RPi_Cam/10.jpg
Normal file
After Width: | Height: | Size: 202 KiB |
BIN
FRC_Fiducial_Tracking/Calibration_Pics_RPi_Cam/11.jpg
Normal file
After Width: | Height: | Size: 200 KiB |
BIN
FRC_Fiducial_Tracking/Calibration_Pics_RPi_Cam/12.jpg
Normal file
After Width: | Height: | Size: 193 KiB |
BIN
FRC_Fiducial_Tracking/Calibration_Pics_RPi_Cam/13.jpg
Normal file
After Width: | Height: | Size: 211 KiB |
BIN
FRC_Fiducial_Tracking/Calibration_Pics_RPi_Cam/14.jpg
Normal file
After Width: | Height: | Size: 176 KiB |
BIN
FRC_Fiducial_Tracking/Calibration_Pics_RPi_Cam/2.jpg
Normal file
After Width: | Height: | Size: 188 KiB |
BIN
FRC_Fiducial_Tracking/Calibration_Pics_RPi_Cam/3.jpg
Normal file
After Width: | Height: | Size: 199 KiB |
BIN
FRC_Fiducial_Tracking/Calibration_Pics_RPi_Cam/4.jpg
Normal file
After Width: | Height: | Size: 194 KiB |
BIN
FRC_Fiducial_Tracking/Calibration_Pics_RPi_Cam/5.jpg
Normal file
After Width: | Height: | Size: 192 KiB |
BIN
FRC_Fiducial_Tracking/Calibration_Pics_RPi_Cam/6.jpg
Normal file
After Width: | Height: | Size: 195 KiB |
BIN
FRC_Fiducial_Tracking/Calibration_Pics_RPi_Cam/7.jpg
Normal file
After Width: | Height: | Size: 214 KiB |
BIN
FRC_Fiducial_Tracking/Calibration_Pics_RPi_Cam/8.jpg
Normal file
After Width: | Height: | Size: 193 KiB |
BIN
FRC_Fiducial_Tracking/Calibration_Pics_RPi_Cam/9.jpg
Normal file
After Width: | Height: | Size: 219 KiB |
69
FRC_Fiducial_Tracking/Camera_Calibration.py
Normal file
@ -0,0 +1,69 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import os
|
||||
import glob
|
||||
|
||||
# Defining the dimensions of checkerboard
|
||||
CHECKERBOARD = (7,7)
|
||||
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
||||
|
||||
# Creating vector to store vectors of 3D points for each checkerboard image
|
||||
objpoints = []
|
||||
# Creating vector to store vectors of 2D points for each checkerboard image
|
||||
imgpoints = []
|
||||
|
||||
|
||||
# Defining the world coordinates for 3D points
|
||||
objp = np.zeros((1, CHECKERBOARD[0] * CHECKERBOARD[1], 3), np.float32)
|
||||
objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)
|
||||
prev_img_shape = None
|
||||
|
||||
# Extracting path of individual image stored in a given directory
|
||||
images = glob.glob('/home/pi/Desktop/Fudicial_Stuff/FRC_Fiducial_Tracking/Calibration_Pics/*.jpg')
|
||||
for fname in images:
|
||||
img = cv2.imread(fname)
|
||||
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
# Find the chess board corners
|
||||
# If desired number of corners are found in the image then ret = true
|
||||
ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD, cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_FAST_CHECK + cv2.CALIB_CB_NORMALIZE_IMAGE)
|
||||
|
||||
"""
|
||||
If desired number of corner are detected,
|
||||
we refine the pixel coordinates and display
|
||||
them on the images of checker board
|
||||
"""
|
||||
if ret == True:
|
||||
objpoints.append(objp)
|
||||
# refining pixel coordinates for given 2d points.
|
||||
corners2 = cv2.cornerSubPix(gray, corners, (11,11),(-1,-1), criteria)
|
||||
|
||||
imgpoints.append(corners2)
|
||||
|
||||
# Draw and display the corners
|
||||
img = cv2.drawChessboardCorners(img, CHECKERBOARD, corners2, ret)
|
||||
|
||||
cv2.imshow('img',img)
|
||||
cv2.waitKey(0)
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
h,w = img.shape[:2]
|
||||
|
||||
"""
|
||||
Performing camera calibration by
|
||||
passing the value of known 3D points (objpoints)
|
||||
and corresponding pixel coordinates of the
|
||||
detected corners (imgpoints)
|
||||
"""
|
||||
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
|
||||
|
||||
print("Camera matrix : \n")
|
||||
print(mtx)
|
||||
print("dist : \n")
|
||||
print(dist)
|
||||
print("rvecs : \n")
|
||||
print(rvecs)
|
||||
print("tvecs : \n")
|
||||
print(tvecs)
|