Initial Commit
Initial Commit of the files.
This commit is contained in:
parent
4c9751e494
commit
4afa1ea1a9
202
FRC_Fiducial_Tracking/April_PNP_Live.py
Normal file
202
FRC_Fiducial_Tracking/April_PNP_Live.py
Normal file
@ -0,0 +1,202 @@
|
||||
#!/usr/bin/env python
|
||||
# Made by Tyler Jacques FRC Team 2648
|
||||
# https://gitlab.coldlightalchemist.com/Tyler-J42/apriltag-pose-frc
|
||||
|
||||
from picamera.array import PiRGBArray
|
||||
from picamera import PiCamera
|
||||
import time
|
||||
import cv2
|
||||
import apriltag
|
||||
import numpy as np
|
||||
from math import sqrt
|
||||
from math import pi
|
||||
from networktables import NetworkTables
|
||||
import argparse
|
||||
from threading import Thread
|
||||
|
||||
|
||||
# translation vector units to inches: tvec/71.22 this constant will differ
|
||||
# according to your camera. Space an apriltag at intervals, note the distance
|
||||
# in pixels and divide it by the real world distance
|
||||
TVEC2IN = 1
|
||||
# Rotational vector radians to degrees
|
||||
RAD2DEG = 180/pi
|
||||
|
||||
|
||||
# focal length in pixels. You can use Camera_Calibrate.py or calculate using a camera spec sheet for more accuracy
|
||||
# focal_length [mm] / imager_element_length [mm/pixel]
|
||||
FOCAL_LEN_PIXELS = 528.6956522
|
||||
# camera matrix from Calibrate_Camera.py.
|
||||
camera_matrix = np.array([[FOCAL_LEN_PIXELS, 0., 308.94165115],
|
||||
[0., FOCAL_LEN_PIXELS, 221.9470321],
|
||||
[0., 0.,1.]])
|
||||
|
||||
b=7.15
|
||||
# 3d object array. The points of the 3d april tag that coresponds to tag_points which we detect
|
||||
objp = np.array([[0,0,0], [b/2, b/2, 0], [-b/2, b/2, 0], [-b/2, -b/2, 0], [b/2, -b/2, 0]], dtype=np.float32)
|
||||
# 2d axis array points for drawing cube overlay
|
||||
axis = np.array([[b/2, b/2, 0], [-b/2, b/2, 0], [-b/2, -b/2, 0], [b/2, -b/2, 0], [b/2, b/2, -b], [-b/2, b/2, -b], [-b/2, -b/2, -b], [b/2, -b/2, -b]], dtype=np.float32)
|
||||
|
||||
# To show display of camera feed add --display in terminal when running script. To set IP address use --ip_add.
|
||||
parser = argparse.ArgumentParser(description="Select display")
|
||||
parser.add_argument("--display", action='store_true', help="enable a display of the camera")
|
||||
parser.add_argument("--ip_add", type=str, required=True)
|
||||
args = parser.parse_args()
|
||||
|
||||
# network tables + RoboRio IP
|
||||
NetworkTables.initialize(server=args.ip_add)
|
||||
vision_table = NetworkTables.getTable("Fiducial")
|
||||
|
||||
FPS = 0
|
||||
|
||||
TARGET_ID = 1
|
||||
|
||||
# class for allocating a thread to only updating the camera stream,
|
||||
# the other thread is used for detection processing
|
||||
class PiVid:
|
||||
|
||||
def __init__(self):
|
||||
# RPi camera recording setup with threading crap.
|
||||
# For specs - https://www.raspberrypi.com/documentation/accessories/camera.html
|
||||
self.camera = PiCamera()
|
||||
self.camera.resolution = (640, 480)
|
||||
self.camera.framerate = 60
|
||||
self.rawCapture = PiRGBArray(self.camera, size=(640,480))
|
||||
self.stream = self.camera.capture_continuous(self.rawCapture, format="bgr", use_video_port=True)
|
||||
|
||||
self.frame = None
|
||||
self.stopped = False
|
||||
|
||||
# Start camera thread
|
||||
def start(self):
|
||||
Thread(target=self.update, args=()).start()
|
||||
return self
|
||||
|
||||
# update camera stream threading
|
||||
def update(self):
|
||||
for frame in self.stream:
|
||||
self.frame=frame.array
|
||||
self.rawCapture.truncate(0)
|
||||
if self.stopped:
|
||||
self.stream.close()
|
||||
self.rawCapture.close()
|
||||
self.camera.close()
|
||||
return
|
||||
|
||||
# output the frame we want
|
||||
def read(self):
|
||||
return self.frame
|
||||
|
||||
# end threading
|
||||
def stop(self):
|
||||
self.stopped = True
|
||||
|
||||
cam = PiVid().start()
|
||||
|
||||
def connectionListener(connected, info):
|
||||
print(info, "; Connected=%s" % connected)
|
||||
|
||||
NetworkTables.addConnectionListener(connectionListener, immediateNotify=True)
|
||||
|
||||
# create overlay on camera feed
|
||||
def display_features(image, imgpts, totalDist):
|
||||
# making red lines around fiducial
|
||||
for i in range(0,4):
|
||||
f = i+1
|
||||
if f>3: f=0
|
||||
cv2.line(image, (int(det.corners[i][0]), int(det.corners[i][1])), (int(det.corners[f][0]), int(det.corners[f][1])), (0,0,255), 3)
|
||||
|
||||
imgpts = np.int32(imgpts).reshape(-1,2)
|
||||
# draw ground floor in green
|
||||
image = cv2.drawContours(image, [imgpts[:4]],-1,(0,255,0),-3)
|
||||
# draw pillars in blue color
|
||||
for i,j in zip(range(4),range(4,8)):
|
||||
image = cv2.line(image, tuple(imgpts[i]), tuple(imgpts[j]),(255),3)
|
||||
# draw top layer in red color
|
||||
image = cv2.drawContours(image, [imgpts[4:]],-1,(0,0,255),3)
|
||||
image = cv2.putText(image, "#"+str(det.tag_id)+", "+str(round(totalDist, 4))+"in", (int(det.center[0]),int(det.center[1])+25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,0,0), 2, cv2.LINE_AA)
|
||||
return image
|
||||
|
||||
# setting up apriltag detection. Make sure this is OUTSIDE the loop next time
|
||||
options = apriltag.DetectorOptions(families='tag16h5', border=1, nthreads=4,
|
||||
quad_decimate=2.0, quad_blur=0.0, refine_edges=True,
|
||||
refine_decode=False, refine_pose=False, debug=False, quad_contours=True)
|
||||
detector = apriltag.Detector(options)
|
||||
|
||||
# main vision processing code
|
||||
time.sleep(0.1)
|
||||
while True:
|
||||
frame_start = time.time()
|
||||
image = cam.read()
|
||||
data_array = []
|
||||
|
||||
#detecting april tags
|
||||
tagFrame = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
output = detector.detect(tagFrame)
|
||||
|
||||
for det in output:
|
||||
# points of the tag to be tracked
|
||||
tag_points = np.array([[det.center[0], det.center[1]], [det.corners[0][0], det.corners[0][1]], [det.corners[1][0], det.corners[1][1]], [det.corners[2][0], det.corners[2][1]], [det.corners[3][0], det.corners[3][1]]], dtype=np.float32)
|
||||
# from Camera_Calibration.py
|
||||
dist = np.array([ 2.32929183e-01, -1.35534844e+00, -1.51912733e-03, -2.17960810e-03, 2.25537289e+00])
|
||||
|
||||
ret,rvecs, tvecs = cv2.solvePnP(objp, tag_points, camera_matrix, dist, flags=0)
|
||||
|
||||
# making translation and rotation vectors into a format good for networktables
|
||||
tvecDist = tvecs.tolist()
|
||||
rvecDeg = (rvecs*RAD2DEG).tolist()
|
||||
for i in range(0,len(tvecDist)):
|
||||
tvecDist[i] = float(tvecDist[i][0])
|
||||
for i in range(0,len(rvecDeg)):
|
||||
rvecDeg[i] = float(rvecDeg[i][0])
|
||||
|
||||
totalDist = sqrt((tvecDist[0]**2)+(tvecDist[1]**2)+(tvecDist[2]**2))
|
||||
|
||||
# only show display if you use --display for argparse
|
||||
if args.display:
|
||||
imgpts, jac = cv2.projectPoints(axis, rvecs, tvecs, camera_matrix, dist)
|
||||
image = display_features(image, imgpts, totalDist)
|
||||
|
||||
data_array.append([det.tag_id, tvecDist, rvecDeg, totalDist])
|
||||
|
||||
|
||||
# writing data to networktables and ordering tags
|
||||
target_detected = False
|
||||
|
||||
for i in range(len(data_array)):
|
||||
orderVal = 0
|
||||
for d in range(len(data_array)):
|
||||
if data_array[d][2]>data_array[i][2] and d!=i and output[d].tag_id==output[i].tag_id:
|
||||
orderVal = ++orderVal
|
||||
|
||||
vision_table.putNumber("tag"+str(data_array[i][0])+"tvecX("+str(orderVal)+")", tvecDist[0])
|
||||
vision_table.putNumber("tag"+str(data_array[i][0])+"tvecY("+str(orderVal)+")", tvecDist[1])
|
||||
vision_table.putNumber("tag"+str(data_array[i][0])+"tvecZ("+str(orderVal)+")", tvecDist[2])
|
||||
|
||||
vision_table.putNumber("tag"+str(data_array[i][0])+"rvecX("+str(orderVal)+")", rvecDeg[0])
|
||||
vision_table.putNumber("tag"+str(data_array[i][0])+"rvecY("+str(orderVal)+")", rvecDeg[1])
|
||||
vision_table.putNumber("tag"+str(data_array[i][0])+"rvecZ("+str(orderVal)+")", rvecDeg[2])
|
||||
|
||||
if TARGET_ID == data_array[0]:
|
||||
target_detected = True
|
||||
|
||||
vision_table.putNumber("numberOfTags", len(data_array))
|
||||
vision_table.putBoolean("targetDetected", target_detected)
|
||||
|
||||
#Showing image. use --display to show image
|
||||
if args.display:
|
||||
image = cv2.putText(image, "FPS: "+str(round(FPS, 4)), (25,440), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2, cv2.LINE_AA)
|
||||
cv2.imshow("Frame", image)
|
||||
|
||||
key = cv2.waitKey(1) & 0xFF
|
||||
if key ==ord("q"):
|
||||
break
|
||||
|
||||
# frame rate for performance
|
||||
FPS = (1/(time.time()-frame_start))
|
||||
#print(FPS)
|
||||
vision_table.putNumber("FPS", FPS)
|
||||
|
||||
cam.stop()
|
||||
cv2.destroyAllWindows()
|
70
FRC_Fiducial_Tracking/Camera_Calibration.py
Normal file
70
FRC_Fiducial_Tracking/Camera_Calibration.py
Normal file
@ -0,0 +1,70 @@
|
||||
#!/usr/bin/env python
|
||||
# credit: https://learnopencv.com/camera-calibration-using-opencv/
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import os
|
||||
import glob
|
||||
|
||||
# Defining the dimensions of checkerboard
|
||||
CHECKERBOARD = (7,7)
|
||||
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
||||
|
||||
# Creating vector to store vectors of 3D points for each checkerboard image
|
||||
objpoints = []
|
||||
# Creating vector to store vectors of 2D points for each checkerboard image
|
||||
imgpoints = []
|
||||
|
||||
|
||||
# Defining the world coordinates for 3D points
|
||||
objp = np.zeros((1, CHECKERBOARD[0] * CHECKERBOARD[1], 3), np.float32)
|
||||
objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)
|
||||
prev_img_shape = None
|
||||
|
||||
# Extracting path of individual image stored in a given directory
|
||||
images = glob.glob('/home/pi/Desktop/Fudicial_Stuff/FRC_Fiducial_Tracking/Calibration_Pics/*.jpg')
|
||||
for fname in images:
|
||||
img = cv2.imread(fname)
|
||||
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
# Find the chess board corners
|
||||
# If desired number of corners are found in the image then ret = true
|
||||
ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD, cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_FAST_CHECK + cv2.CALIB_CB_NORMALIZE_IMAGE)
|
||||
|
||||
"""
|
||||
If desired number of corner are detected,
|
||||
we refine the pixel coordinates and display
|
||||
them on the images of checker board
|
||||
"""
|
||||
if ret == True:
|
||||
objpoints.append(objp)
|
||||
# refining pixel coordinates for given 2d points.
|
||||
corners2 = cv2.cornerSubPix(gray, corners, (11,11),(-1,-1), criteria)
|
||||
|
||||
imgpoints.append(corners2)
|
||||
|
||||
# Draw and display the corners
|
||||
img = cv2.drawChessboardCorners(img, CHECKERBOARD, corners2, ret)
|
||||
|
||||
cv2.imshow('img',img)
|
||||
cv2.waitKey(0)
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
h,w = img.shape[:2]
|
||||
|
||||
"""
|
||||
Performing camera calibration by
|
||||
passing the value of known 3D points (objpoints)
|
||||
and corresponding pixel coordinates of the
|
||||
detected corners (imgpoints)
|
||||
"""
|
||||
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
|
||||
|
||||
print("Camera matrix : \n")
|
||||
print(mtx)
|
||||
print("dist : \n")
|
||||
print(dist)
|
||||
print("rvecs : \n")
|
||||
print(rvecs)
|
||||
print("tvecs : \n")
|
||||
print(tvecs)
|
Loading…
Reference in New Issue
Block a user