Added multiple same id tag detection, argparse, and comments

This commit is contained in:
Tyler Jacques 2022-09-26 02:51:58 +00:00
parent cdab085dd9
commit 14055e8e21

View File

@ -1,5 +1,7 @@
#!/usr/bin/env python
# Made by Tyler Jacques FRC Team 2648
# Before deployment in competition comment out lines: 88, 89, and 97
# https://gitlab.coldlightalchemist.com/Tyler-J42/apriltag-pose-frc
from picamera.array import PiRGBArray
from picamera import PiCamera
import time
@ -8,9 +10,12 @@ import apriltag
import numpy as np
import math
from networktables import NetworkTables
import argparse
# translation vector units to inches tvec/71.22
# translation vector units to inches: tvec/71.22 this constant will differ
# according to your camera. Space an apriltag at intervals, note the distance
# in pixels and divide it by the real world distance
TVEC2IN = 1/71.22
# Rotational vector radians to degrees
RAD2DEG = 180/math.pi
@ -22,28 +27,38 @@ camera.resolution = (640, 480)
camera.framerate = 32
rawCapture = PiRGBArray(camera, size=(640,480))
# focal length in pixels. You can calculate using camera spec sheet for more accuracy
# focal length in pixels. You can use Camera_Calibrate.py or calculate using a camera spec sheet for more accuracy
# focal_length [mm] / imager_element_length [mm/pixel]
FOCAL_LEN_PIXELS = 528.6956522
# camera matrix from Calibrate_Camera.py.
camera_matrix = np.array([[FOCAL_LEN_PIXELS, 0., 308.94165115],
[0., FOCAL_LEN_PIXELS, 221.9470321],
[0., 0.,1.]])
# 3d object array
# 3d object array. The points of the 3d april tag that coresponds to tag_points which we detect
objp = np.array([[240, 240, 0], [0, 0, 0], [480, 0, 0], [480, 480, 0], [0, 480, 0]], dtype=np.float32)
# 2d image array
# 2d axis array points for drawing cube overlay
axis = np.array([[0,0,0], [0,480,0], [480,480,0], [480,0,0], [0,0,-480], [0,480,-480], [480,480,-480], [480,0,-480]], dtype=np.float32)
# put your RoboRio IP here
NetworkTables.initialize(server="1234567890")
vision_table = NetworkTables.getTable("Fiducial")
# To show display of camera feed add --display in terminal when running script.
parser = argparse.ArgumentParser(description="Select display")
parser.add_argument("--display", action='store_true', help="enable a display of the camera")
args = parser.parse_args()
FPS = 0
def connectionListener(connected, info):
print(info, "; Connected=%s" % connected)
NetworkTables.addConnectionListener(connectionListener, immediateNotify=True)
# create overlay on camera feed
def display_features(image, imgpts):
# making lines on fiducial
# making red lines around fiducial
for i in range(0,4):
f = i+1
if f>3: f=0
@ -63,20 +78,25 @@ time.sleep(0.1)
for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
frame_start = time.time()
image = frame.array
data_array = []
#detecting april tags
tagFrame = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
options = apriltag.DetectorOptions(families='tag36h11', border=1, nthreads=4,
quad_decimate=1.0, quad_blur=0.0, refine_edges=True,
refine_decode=False, refine_pose=False, debug=False, quad_contours=True)
detector = apriltag.Detector()
output = detector.detect(tagFrame)
for det in output:
# points of the tag to be tracked
tag_points = np.array([[det.center[0], det.center[1]], [det.corners[0][0], det.corners[0][1]], [det.corners[1][0], det.corners[1][1]], [det.corners[2][0], det.corners[2][1]], [det.corners[3][0], det.corners[3][1]]], dtype=np.float32)
# from Camera_Calibration.py
dist = np.array([ 2.32929183e-01, -1.35534844e+00, -1.51912733e-03, -2.17960810e-03, 2.25537289e+00])
ret,rvecs, tvecs = cv2.solvePnP(objp, tag_points, camera_matrix, dist, flags=0)
# making translation and rotation vectors into a format good for networktables
tvecDist = (tvecs*TVEC2IN).tolist()
rvecDeg = (rvecs*RAD2DEG).tolist()
for i in range(0,len(tvecDist)):
@ -84,17 +104,35 @@ for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=
for i in range(0,len(rvecDeg)):
rvecDeg[i] = float(rvecDeg[i][0])
# comment out bottom two lines to eliminate drawing overlay
imgpts, jac = cv2.projectPoints(axis, rvecs, tvecs, camera_matrix, dist)
image = display_features(image, imgpts)
#print("tag"+str(det.tag_id)+"tvecs", tvecDist)
#print("tag"+str(det.tag_id)+"rvecs", rvecDeg)
vision_table.putNumberArray("tag"+str(det.tag_id)+"tvecs", tvecDist)
vision_table.putNumberArray("tag"+str(det.tag_id)+"rvecs", rvecDeg)
totalDist = math.sqrt((tvecDist[0]**2)+(tvecDist[1]**2)+(tvecDist[2]**2))
#Showing image. comment to stop display and speed up detection
cv2.imshow("Frame", image)
# only show display if you use --display for argparse
if args.display:
imgpts, jac = cv2.projectPoints(axis, rvecs, tvecs, camera_matrix, dist)
image = display_features(image, imgpts)
data_array.append([tvecDist, rvecDeg, totalDist])
# writing data to networktables and ordering tags
for i in range(len(data_array)):
orderVal = 0
for d in range(len(data_array)):
if data_array[d][2]>data_array[i][2] and d!=i and output[d].tag_id==output[i].tag_id:
orderVal = ++orderVal
vision_table.putNumber("tag"+str(det.tag_id)+"tvecX("+str(orderVal)+")", tvecDist[0])
vision_table.putNumber("tag"+str(det.tag_id)+"tvecY("+str(orderVal)+")", tvecDist[1])
vision_table.putNumber("tag"+str(det.tag_id)+"tvecZ"+str(orderVal)+")", tvecDist[2])
vision_table.putNumber("tag"+str(det.tag_id)+"rvecX("+str(orderVal)+")", rvecDeg[0])
vision_table.putNumber("tag"+str(det.tag_id)+"rvecY("+str(orderVal)+")", rvecDeg[1])
vision_table.putNumber("tag"+str(det.tag_id)+"rvecZ("+str(orderVal)+")", rvecDeg[2])
#Showing image. use --display to show image
if args.display:
image = cv2.putText(image, "FPS: "+str(round(FPS, 4)), (25,440), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,0,0), 2, cv2.LINE_AA)
cv2.imshow("Frame", image)
key = cv2.waitKey(1) & 0xFF
rawCapture.truncate(0)
@ -103,4 +141,4 @@ for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=
# frame rate for performance
FPS = (1/(time.time()-frame_start))
#print(FPS)
vision_table.putNumber("FPS", FPS)