Pose estimation, VisualPoseProvider setup, plus a little more cleanup of Drivetrain subsystem to have things make slightly more sense

This commit is contained in:
Bradley Bickford 2024-01-10 20:24:59 -05:00
parent 73b068903e
commit 69fd4b76cc
5 changed files with 114 additions and 72 deletions

View File

@ -5,6 +5,7 @@
package frc.robot;
import edu.wpi.first.math.MathUtil;
import edu.wpi.first.math.geometry.Pose2d;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.Commands;
import edu.wpi.first.wpilibj2.command.button.CommandXboxController;
@ -18,7 +19,9 @@ public class RobotContainer {
private CommandXboxController secondary;
public RobotContainer() {
drivetrain = new Drivetrain();
// TODO Need to provide a real initial pose
// TODO Need to provide a real VisualPoseProvider, null means we're not using one at all
drivetrain = new Drivetrain(new Pose2d(), null);
primary = new CommandXboxController(OIConstants.kPrimaryXboxUSB);
secondary = new CommandXboxController(OIConstants.kSecondaryXboxUSB);

View File

@ -2,6 +2,7 @@ package frc.robot.subsystems;
import edu.wpi.first.math.MathUtil;
import edu.wpi.first.math.controller.PIDController;
import edu.wpi.first.math.estimator.SwerveDrivePoseEstimator;
import edu.wpi.first.math.filter.SlewRateLimiter;
import edu.wpi.first.math.geometry.Pose2d;
import edu.wpi.first.math.geometry.Rotation2d;
@ -20,68 +21,90 @@ import frc.robot.constants.AutoConstants;
import frc.robot.constants.DrivetrainConstants;
import frc.robot.utilities.MAXSwerveModule;
import frc.robot.utilities.SwerveUtils;
import frc.robot.utilities.VisualPoseProvider;
import edu.wpi.first.wpilibj2.command.Command;
import edu.wpi.first.wpilibj2.command.PIDCommand;
import edu.wpi.first.wpilibj2.command.SubsystemBase;
public class Drivetrain extends SubsystemBase {
// Create MAXSwerveModules
private final MAXSwerveModule m_frontLeft = new MAXSwerveModule(
DrivetrainConstants.kFrontLeftDrivingCanId,
DrivetrainConstants.kFrontLeftTurningCanId,
DrivetrainConstants.kFrontLeftChassisAngularOffset
);
private final MAXSwerveModule m_frontRight = new MAXSwerveModule(
DrivetrainConstants.kFrontRightDrivingCanId,
DrivetrainConstants.kFrontRightTurningCanId,
DrivetrainConstants.kFrontRightChassisAngularOffset
);
private final MAXSwerveModule m_rearLeft = new MAXSwerveModule(
DrivetrainConstants.kRearLeftDrivingCanId,
DrivetrainConstants.kRearLeftTurningCanId,
DrivetrainConstants.kBackLeftChassisAngularOffset
);
private final MAXSwerveModule m_rearRight = new MAXSwerveModule(
DrivetrainConstants.kRearRightDrivingCanId,
DrivetrainConstants.kRearRightTurningCanId,
DrivetrainConstants.kBackRightChassisAngularOffset
);
private final MAXSwerveModule m_frontLeft;
private final MAXSwerveModule m_frontRight;
private final MAXSwerveModule m_rearLeft;
private final MAXSwerveModule m_rearRight;
// The gyro sensor
private final AHRS m_gyro = new AHRS(SPI.Port.kMXP);
private final AHRS m_gyro;
// Slew rate filter variables for controlling lateral acceleration
private double m_currentRotation = 0.0;
private double m_currentTranslationDir = 0.0;
private double m_currentTranslationMag = 0.0;
private final SlewRateLimiter m_magLimiter;
private final SlewRateLimiter m_rotLimiter;
private SlewRateLimiter m_magLimiter = new SlewRateLimiter(DrivetrainConstants.kMagnitudeSlewRate);
private SlewRateLimiter m_rotLimiter = new SlewRateLimiter(DrivetrainConstants.kRotationalSlewRate);
private double m_prevTime = WPIUtilJNI.now() * 1e-6;
private final VisualPoseProvider m_visualPoseProvider;
// Odometry class for tracking robot pose
SwerveDriveOdometry m_odometry = new SwerveDriveOdometry(
DrivetrainConstants.kDriveKinematics,
Rotation2d.fromDegrees(getGyroAngle()),
new SwerveModulePosition[] {
m_frontLeft.getPosition(),
m_frontRight.getPosition(),
m_rearLeft.getPosition(),
m_rearRight.getPosition()
}
);
SwerveDrivePoseEstimator m_poseEstimator;
// Slew rate filter variables for controlling lateral acceleration
private double m_currentRotation;
private double m_currentTranslationDir;
private double m_currentTranslationMag;
private double m_prevTime;
/** Creates a new DriveSubsystem. */
public Drivetrain() {
public Drivetrain(Pose2d initialPose, VisualPoseProvider visualPoseProvider) {
m_frontLeft = new MAXSwerveModule(
DrivetrainConstants.kFrontLeftDrivingCanId,
DrivetrainConstants.kFrontLeftTurningCanId,
DrivetrainConstants.kFrontLeftChassisAngularOffset
);
m_frontRight = new MAXSwerveModule(
DrivetrainConstants.kFrontRightDrivingCanId,
DrivetrainConstants.kFrontRightTurningCanId,
DrivetrainConstants.kFrontRightChassisAngularOffset
);
m_rearLeft = new MAXSwerveModule(
DrivetrainConstants.kRearLeftDrivingCanId,
DrivetrainConstants.kRearLeftTurningCanId,
DrivetrainConstants.kBackLeftChassisAngularOffset
);
m_rearRight = new MAXSwerveModule(
DrivetrainConstants.kRearRightDrivingCanId,
DrivetrainConstants.kRearRightTurningCanId,
DrivetrainConstants.kBackRightChassisAngularOffset
);
m_gyro = new AHRS(SPI.Port.kMXP);
m_magLimiter = new SlewRateLimiter(DrivetrainConstants.kMagnitudeSlewRate);
m_rotLimiter = new SlewRateLimiter(DrivetrainConstants.kRotationalSlewRate);
m_poseEstimator = new SwerveDrivePoseEstimator(
DrivetrainConstants.kDriveKinematics,
Rotation2d.fromDegrees(getGyroAngle()),
new SwerveModulePosition[] {
m_frontLeft.getPosition(),
m_frontRight.getPosition(),
m_rearLeft.getPosition(),
m_rearRight.getPosition()
},
initialPose
);
m_visualPoseProvider = visualPoseProvider;
m_currentRotation = 0.0;
m_currentTranslationDir = 0.0;
m_currentTranslationMag = 0.0;
m_prevTime = WPIUtilJNI.now() * 1e-6;
}
@Override
public void periodic() {
// Update the odometry in the periodic block
m_odometry.update(
m_poseEstimator.update(
Rotation2d.fromDegrees(getGyroAngle()),
new SwerveModulePosition[] {
m_frontLeft.getPosition(),
@ -90,6 +113,13 @@ public class Drivetrain extends SubsystemBase {
m_rearRight.getPosition()
}
);
if (m_visualPoseProvider != null) {
m_poseEstimator.addVisionMeasurement(
m_visualPoseProvider.getVisualPose().visualPose(),
m_visualPoseProvider.getVisualPose().timestamp()
);
}
}
/**
@ -98,15 +128,15 @@ public class Drivetrain extends SubsystemBase {
* @return The pose.
*/
public Pose2d getPose() {
return m_odometry.getPoseMeters();
return m_poseEstimator.getEstimatedPosition();
}
public double getPoseX(){
return m_odometry.getPoseMeters().getX();
return m_poseEstimator.getEstimatedPosition().getX();
}
public double getPoseY(){
return m_odometry.getPoseMeters().getY();
return m_poseEstimator.getEstimatedPosition().getY();
}
/**
@ -115,7 +145,7 @@ public class Drivetrain extends SubsystemBase {
* @param pose The pose to which to set the odometry.
*/
public void resetOdometry(Pose2d pose) {
m_odometry.resetPosition(
m_poseEstimator.resetPosition(
Rotation2d.fromDegrees(getGyroAngle()),
new SwerveModulePosition[] {
m_frontLeft.getPosition(),

View File

@ -11,7 +11,7 @@ import com.revrobotics.SparkPIDController;
import com.revrobotics.AbsoluteEncoder;
import com.revrobotics.RelativeEncoder;
import frc.robot.constants.ModuleConstants;
import frc.robot.constants.SwerveModuleConstants;
public class MAXSwerveModule {
private final CANSparkMax m_drivingSparkMax;
@ -52,49 +52,49 @@ public class MAXSwerveModule {
// Apply position and velocity conversion factors for the driving encoder. The
// native units for position and velocity are rotations and RPM, respectively,
// but we want meters and meters per second to use with WPILib's swerve APIs.
m_drivingEncoder.setPositionConversionFactor(ModuleConstants.kDrivingEncoderPositionFactor);
m_drivingEncoder.setVelocityConversionFactor(ModuleConstants.kDrivingEncoderVelocityFactor);
m_drivingEncoder.setPositionConversionFactor(SwerveModuleConstants.kDrivingEncoderPositionFactor);
m_drivingEncoder.setVelocityConversionFactor(SwerveModuleConstants.kDrivingEncoderVelocityFactor);
// Apply position and velocity conversion factors for the turning encoder. We
// want these in radians and radians per second to use with WPILib's swerve
// APIs.
m_turningEncoder.setPositionConversionFactor(ModuleConstants.kTurningEncoderPositionFactor);
m_turningEncoder.setVelocityConversionFactor(ModuleConstants.kTurningEncoderVelocityFactor);
m_turningEncoder.setPositionConversionFactor(SwerveModuleConstants.kTurningEncoderPositionFactor);
m_turningEncoder.setVelocityConversionFactor(SwerveModuleConstants.kTurningEncoderVelocityFactor);
// Invert the turning encoder, since the output shaft rotates in the opposite direction of
// the steering motor in the MAXSwerve Module.
m_turningEncoder.setInverted(ModuleConstants.kTurningEncoderInverted);
m_turningEncoder.setInverted(SwerveModuleConstants.kTurningEncoderInverted);
// Enable PID wrap around for the turning motor. This will allow the PID
// controller to go through 0 to get to the setpoint i.e. going from 350 degrees
// to 10 degrees will go through 0 rather than the other direction which is a
// longer route.
m_turningPIDController.setPositionPIDWrappingEnabled(true);
m_turningPIDController.setPositionPIDWrappingMinInput(ModuleConstants.kTurningEncoderPositionPIDMinInput);
m_turningPIDController.setPositionPIDWrappingMaxInput(ModuleConstants.kTurningEncoderPositionPIDMaxInput);
m_turningPIDController.setPositionPIDWrappingMinInput(SwerveModuleConstants.kTurningEncoderPositionPIDMinInput);
m_turningPIDController.setPositionPIDWrappingMaxInput(SwerveModuleConstants.kTurningEncoderPositionPIDMaxInput);
// Set the PID gains for the driving motor. Note these are example gains, and you
// may need to tune them for your own robot!
m_drivingPIDController.setP(ModuleConstants.kDrivingP);
m_drivingPIDController.setI(ModuleConstants.kDrivingI);
m_drivingPIDController.setD(ModuleConstants.kDrivingD);
m_drivingPIDController.setFF(ModuleConstants.kDrivingFF);
m_drivingPIDController.setOutputRange(ModuleConstants.kDrivingMinOutput,
ModuleConstants.kDrivingMaxOutput);
m_drivingPIDController.setP(SwerveModuleConstants.kDrivingP);
m_drivingPIDController.setI(SwerveModuleConstants.kDrivingI);
m_drivingPIDController.setD(SwerveModuleConstants.kDrivingD);
m_drivingPIDController.setFF(SwerveModuleConstants.kDrivingFF);
m_drivingPIDController.setOutputRange(SwerveModuleConstants.kDrivingMinOutput,
SwerveModuleConstants.kDrivingMaxOutput);
// Set the PID gains for the turning motor. Note these are example gains, and you
// may need to tune them for your own robot!
m_turningPIDController.setP(ModuleConstants.kTurningP);
m_turningPIDController.setI(ModuleConstants.kTurningI);
m_turningPIDController.setD(ModuleConstants.kTurningD);
m_turningPIDController.setFF(ModuleConstants.kTurningFF);
m_turningPIDController.setOutputRange(ModuleConstants.kTurningMinOutput,
ModuleConstants.kTurningMaxOutput);
m_turningPIDController.setP(SwerveModuleConstants.kTurningP);
m_turningPIDController.setI(SwerveModuleConstants.kTurningI);
m_turningPIDController.setD(SwerveModuleConstants.kTurningD);
m_turningPIDController.setFF(SwerveModuleConstants.kTurningFF);
m_turningPIDController.setOutputRange(SwerveModuleConstants.kTurningMinOutput,
SwerveModuleConstants.kTurningMaxOutput);
m_drivingSparkMax.setIdleMode(ModuleConstants.kDrivingMotorIdleMode);
m_turningSparkMax.setIdleMode(ModuleConstants.kTurningMotorIdleMode);
m_drivingSparkMax.setSmartCurrentLimit(ModuleConstants.kDrivingMotorCurrentLimit);
m_turningSparkMax.setSmartCurrentLimit(ModuleConstants.kTurningMotorCurrentLimit);
m_drivingSparkMax.setIdleMode(SwerveModuleConstants.kDrivingMotorIdleMode);
m_turningSparkMax.setIdleMode(SwerveModuleConstants.kTurningMotorIdleMode);
m_drivingSparkMax.setSmartCurrentLimit(SwerveModuleConstants.kDrivingMotorCurrentLimit);
m_turningSparkMax.setSmartCurrentLimit(SwerveModuleConstants.kTurningMotorCurrentLimit);
// Save the SPARK MAX configurations. If a SPARK MAX browns out during
// operation, it will maintain the above configurations.

View File

@ -0,0 +1,9 @@
package frc.robot.utilities;
import edu.wpi.first.math.geometry.Pose2d;
public interface VisualPoseProvider {
public record VisualPose(Pose2d visualPose, double timestamp) {}
public VisualPose getVisualPose();
}