Files
Breadbot/bin/breadmixer.py

123 lines
3.7 KiB
Python

import json
import os
import copy
from pathlib import Path
from datetime import datetime, timezone
from breadbot_common import SQLite, MySQL, TranscriptableFile, mix_audio_with_ffmpeg
from txtai.pipeline import Transcription
MAX_FILES_PER_CYCLE=50
script_path = Path(__file__).resolve()
config_path = Path(script_path.parent, "config.json")
with open(config_path, 'r') as config_file:
config_json = json.loads(config_file.read())
if config_json["db"]["type"].casefold() == "SQLITE".casefold():
db = SQLite(Path(script_path.parent.parent, config_json["db"]["db_path"]))
else:
db = MySQL(
config_json["db"]["host"],
config_json["db"]["user"],
config_json["db"]["password"],
config_json["db"]["db_name"]
)
calls_needing_work = db.query(
"SELECT * FROM db_call WHERE NOT call_end_time IS NULL AND call_consolidated = 0 AND call_transcribed = 0"
)
if calls_needing_work[0] == 0:
print("No work to do, exiting")
transcriber = Transcription("openai/whisper-base")
for call in calls_needing_work[1]:
all_files = os.listdir(Path(
config_json["media_voice_folder"],
str(call[0])
))
transcriptable_files = []
for file in all_files:
print(file)
file_name_no_extension = file.split('.')[0]
timestamp = int(file_name_no_extension.split('-')[0])
user_snowflake = file_name_no_extension.split('-')[1]
file_stamp_as_datetime = datetime.fromtimestamp(timestamp / 1000, timezone.utc)
print(file_stamp_as_datetime)
print(type(call[1]))
print(call[1])
time_diff = file_stamp_as_datetime - datetime.fromisoformat(call[1] + 'Z')
print(time_diff)
transcriptable_files.append(TranscriptableFile(
file_path = str(Path(config_json["media_voice_folder"], str(call[0]), file)),
real_date = file_stamp_as_datetime,
milliseconds_from_start = int((time_diff.seconds * 1000) + (time_diff.microseconds / 1000)),
user_snowflake = user_snowflake
))
transcriptable_files.sort(key=lambda a: a.milliseconds_from_start)
# TODO Possibly RAM abusive solution to wanting to keep the original list around
ffmpeg_files = copy.deepcopy(transcriptable_files)
for file in ffmpeg_files:
print(file.file_path)
print(file.real_date)
print(file.milliseconds_from_start)
# TODO Error handling for all ffmpeg operations
while len(ffmpeg_files) > MAX_FILES_PER_CYCLE:
ffmpeg_files = [
mix_audio_with_ffmpeg(
ffmpeg_files[index:min(index + MAX_FILES_PER_CYCLE, len(ffmpeg_files))],
config_json["media_voice_folder"],
call[0],
False
)
for index in range(0, len(ffmpeg_files), MAX_FILES_PER_CYCLE)
]
final_pass_file = mix_audio_with_ffmpeg(
ffmpeg_files,
config_json["media_voice_folder"],
call[0],
True
)
db.update("db_call", ["call_consolidated"], [1, call[0]], [{
"name": "call_id",
"compare": "="
}])
for file in os.listdir(Path(config_json["media_voice_folder"], str(call[0]))):
if file.startswith("intermediate"):
os.remove(Path(config_json["media_voice_folder"], str(call[0]), file))
for file in transcriptable_files:
text = transcriber(file.file_path)
db.insert(
"db_call_transcriptions",
["speaking_start_time", "text", "callCallId", "userUserSnowflake"],
[file.real_date, text, call[0], file.user_snowflake]
)
db.update("db_call", ["call_transcribed"], [1, call[0]], [{
"name": "call_id",
"compare": "="
}])